lim(1+1/x)^x=e 该极限所得结果的证明过程 谢谢 x→∞
具体回答如下:
im (1+1/x)^x
=lim e^[ ln ((1+1/x)^x)]
= e^ lim [ x ln (1+1/x)]
x-->无穷大 1/x--> 0
此时,ln (1+1/x) = 1/x (等价无穷小)
lim [ x ln (1+1/x)] = x * 1/x = 1
原式= e^ 1 = e
极限的性质:
和实数运算的相容性,譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列{xn+yn}也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。
与子列的关系,数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。
解答:
1、证明数列 (1+1/n)^n 是单增数列(用二项式展开);
2、证明数列 (1+1/n)^n 有界;
3、记该数列极限为e;
4、求 (1+1/n)^(n+1),(1+1/n)^(n-1) 的极限;
5、将 (1+1/x)^x 用夹逼准则放在上面几个数列极限之间即可。
N的相应性
一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
1、证明数列
(1+1/n)^n
是单增数列(用二项式展开);
2、证明数列
(1+1/n)^n
有界;
3、记该数列极限为e;
4、求
(1+1/n)^(n+1),(1+1/n)^(n-1)
的极限;
5、将
(1+1/x)^x
用夹逼准则放在上面几个数列极限之间即可。