求帮忙看看高数选择题,给出答案就行,谢谢大佬

 我来答
乾暄秋梵0kO
2020-08-26 · TA获得超过510个赞
知道小有建树答主
回答量:1775
采纳率:0%
帮助的人:170万
展开全部
特征方程 t^2-1=0,根 t=±1,
因此齐次方程通解 y=C1e^(-x)+C2e^x,
根据右端形式特点,设特解 y=(ax^2+bx)e^x,
则 y'=[ax^2+(2a+b)x+b]e^x,y''=[ax^2+(4a+b)x+2a+2b)e^x,
代入得 a=1,b=-1,
所以原方程通解 y=C1e^(-x)+C2e^x+(x^2-x)e^x,
代入初值,得 C1+C2=0,-C1+C2-1=1,
解得 C1=-1,C2=1,
所以所求特解 y* = -e^(-x)+e^x+(x^2-x)e^x。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式