已知函数f(x)=x^2-2ax+1,g(x)=a/x,其中a>0
已知函数f(x)=x^2-2ax+1,g(x)=a/x,其中a>0对任意的x1∈[1,2],x2∈[2,4],f(x1)>g(x2)恒成立,求实数a的取值范围。...已知...
已知函数f(x)=x^2-2ax+1,g(x)=a/x,其中a>0对任意的x1∈[1,2],x2∈[2,4],f(x1)>g(x2)恒成立,求实数a的取值范围。... 已知函数f(x)=x^2-2ax+1,g(x)=a/x,其中a>0 对任意的x1∈[1,2],x2∈[2,4],f(x1)>g(x2)恒成立,求实数a的取值范围。 展开
展开
1个回答
展开全部
对任意的x1∈[1,2],x2∈[2,4],f(x1)>g(x2)恒成立
就是先求f(x)在【1,2】上的最小值
和g(x)在【2,4】上的最大值,显然就是最大值为g(2)=a/2
而f(x)最小值就要讨论啦,f(x)=(x-a)²+1-a²
①当
0<a<1,那最小值就是f(1)=2-2a,
就要满足
2-2a>a/2,解得a<4/5
于是0<a<4/5
②当a>2,于是最小值就是f(2)=5-4a
要满足
5-4a>a/2,解得a<10/9
无解
③当1≤a≤2,那么最小值就是f(a)=1-a²
需要满足1-a²>a/2解得
(-1-根号17)/4<a<(-1+根号17)/4
于是1≤a<(-1+根号17)/4
综上所述
就是a的范围是
0<a<4/5和1≤a<(-1+根号17)/4
就是先求f(x)在【1,2】上的最小值
和g(x)在【2,4】上的最大值,显然就是最大值为g(2)=a/2
而f(x)最小值就要讨论啦,f(x)=(x-a)²+1-a²
①当
0<a<1,那最小值就是f(1)=2-2a,
就要满足
2-2a>a/2,解得a<4/5
于是0<a<4/5
②当a>2,于是最小值就是f(2)=5-4a
要满足
5-4a>a/2,解得a<10/9
无解
③当1≤a≤2,那么最小值就是f(a)=1-a²
需要满足1-a²>a/2解得
(-1-根号17)/4<a<(-1+根号17)/4
于是1≤a<(-1+根号17)/4
综上所述
就是a的范围是
0<a<4/5和1≤a<(-1+根号17)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询