从1开始裂项求和

裂项法求和!1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+...+n)=?重要的是咋做。... 裂项法求和!
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+...+n)=?
重要的是咋做。
展开
 我来答
农男昔如凡
2019-04-14 · TA获得超过1211个赞
知道小有建树答主
回答量:1927
采纳率:90%
帮助的人:9.1万
展开全部
原式=1+1/3+1/6+...+2/[n(n+1)]
=1+1/3+1/6+...+2[(1/n)-1/(n+1)]
=1+2[1/2-1/3+1/3-1/4+...+1/n-1/(n+1)]
=1+2[1/2-1/(n+1)]
=2-2/(n+1)
=2n/(n+1)
重点是了1/[n(n+1)]=1/n-1/(n+1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式