展开全部
1/(d+1+2i) + 1/(d+1-2j) - 1/(d+2)
=[(d+1-2j) +(d+1+2j) ]/[(d+1)^2+4] -1/(d+2)
=2(d+1)/(d^2+2d+5) -1/(d+2)
=[2(d+1)(d+2) -(d^2+2d+5) ]/[(d^2+2d+5)(d+2)]
=[2d^2+6d+4-(d^2+2d+5) ]/[(d^2+2d+5)(d+2)]
=(d^2+4d-1)/[(d^2+2d+5)(d+2)]
=[(d+1-2j) +(d+1+2j) ]/[(d+1)^2+4] -1/(d+2)
=2(d+1)/(d^2+2d+5) -1/(d+2)
=[2(d+1)(d+2) -(d^2+2d+5) ]/[(d^2+2d+5)(d+2)]
=[2d^2+6d+4-(d^2+2d+5) ]/[(d^2+2d+5)(d+2)]
=(d^2+4d-1)/[(d^2+2d+5)(d+2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询