4个回答
展开全部
可以令分母 = g(x) = x(1-f'(y), y' = 1/g(x)
用 chain rule,
y'' = -(1/g(x))^2 g'(x)
= -(1/g(x))^2 [1-f''(y) - xf''(y) y']
= -(1/g(x))^2 [1-f''(y) - xf''(y)/g(x)]
= -(1/g(x))^3 [(1-f''(y))g(x) - xf''(y)]
= -(1/(x(1-f'(y)))^3 [(1-f''(y)^2 - f''(y)]x, after substitute g(x) = x(1-f'(y))
= 答案
用 chain rule,
y'' = -(1/g(x))^2 g'(x)
= -(1/g(x))^2 [1-f''(y) - xf''(y) y']
= -(1/g(x))^2 [1-f''(y) - xf''(y)/g(x)]
= -(1/g(x))^3 [(1-f''(y))g(x) - xf''(y)]
= -(1/(x(1-f'(y)))^3 [(1-f''(y)^2 - f''(y)]x, after substitute g(x) = x(1-f'(y))
= 答案
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询