设A、B为n阶矩阵,且A^2=A,B^2=B,(A-B)^2=A+B.证明:AB=BA=O 我来答 2个回答 #热议# 上班途中天气原因受伤算工伤吗? 茹翊神谕者 2022-08-02 · TA获得超过2.5万个赞 知道大有可为答主 回答量:3.6万 采纳率:76% 帮助的人:1557万 我也去答题访问个人页 关注 展开全部 简单计算一下,答案如图所示 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 蒲弘虎元魁 2020-07-20 · TA获得超过1024个赞 知道小有建树答主 回答量:1569 采纳率:94% 帮助的人:7万 我也去答题访问个人页 关注 展开全部 证:由已知,(A-B)²=(A-B)*(A-B)=A(A-B)-B(A-B)=A²-AB-BA+B²=A-AB-BA+B=A+B,所以AB+BA=0,又AB=A²B=(AA)B=A(AB)=A(-BA)=-A(BA)=-(AB)A=(BA)A=B(AA)=BA²=BA,所以AB=BA=0. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 广告您可能关注的内容AHP 2024 最新版 层次分析法软件下载www.statistical-analysis.top查看更多 为你推荐: