如图,AB=CD,AD=BC,E、F在AC上,且AE=CF.求证:DE‖BF
展开全部
证明:∵AB=CD,AD=BC
∴四边形ABCD为平行四边形
∴∠DAE=∠BCF
在△DAE和△BCF中
AE=CF
∠DAE=∠BCF
AD=BC
∴△DAE≌△BCF
∴∠AED=∠BFC
延长BF交CD于点G
∵∠AFG=∠BFC
∴∠AED=∠AFG
∴DE‖BF
∴四边形ABCD为平行四边形
∴∠DAE=∠BCF
在△DAE和△BCF中
AE=CF
∠DAE=∠BCF
AD=BC
∴△DAE≌△BCF
∴∠AED=∠BFC
延长BF交CD于点G
∵∠AFG=∠BFC
∴∠AED=∠AFG
∴DE‖BF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司
2021-12-27 广告
2021-12-27 广告
一、标准解读:1.ASTM D4169-16标准共18个物流分配周期。⒉.危险因素分为以下几种:A人工和机械操作(跌落、冲击和稳定性)、B仓储堆码(压力)、C运载堆码(压力)、D堆码振动(振动)、E运载振动(振动)、F散装负载振动(连续振动...
点击进入详情页
本回答由富港检测技术(东莞)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询