根号1+x^2的不定积分
2个回答
展开全部
具体过程如下:
∫√(1+x^2 )dx
令x=tant
原式=∫sect·dtant
=sect·tant-∫tantdsect
=sect·tant-∫tant·tantsectdt
=sect·tant-∫(sec²t-1)sectdt
=sect·tant-∫(sec³t-sect)dt
=sect·tant-∫sec³tdt+∫sectdt
=sect·tant-∫sect·dtant +∫sectdt
所以
2×∫sect·dtant=sect·tant-∫sect·dt
=sect·tant-ln|zhuansect+tant|+2c
=x√(1+x²)-ln|x+√(1+x²)|+2c
即
原式=1/2x√(1+x²)-1/2ln|x+√(1+x²)|+c
扩展资料:
一个函数,可以存在不定积分,而胡乱不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若大告在有限区间[a,b]上滚做明只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
∫ x/√(1-x²) dx =(1/2)∫ 1/√(1-x²) d(x²) =-(1/2)∫ 1/√(1-x²) d(-x²) =-√(1-x²) + C 【数学之美】团队为...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
令清槐x=tant,t∈(-π/2,π/2),则√(1+x²)=sect,dx=sec²tdt
∫√(1+x²) dx
=∫sec³t dt
=∫sect d(tant)
=sect*tant-∫tant d(sect)
=sect*tant-∫tan²t*sectdt
=sect*tant-∫基前(sec²t-1)*sectdt
=sect*tant-∫答锋友sec³tdt+∫sectdt
∴∫sec^3tdt=(1/2)(sect*tant+∫sectdt)
=(1/2)(sect*tant+ln|sect+tant|)+C
∴原式=(1/2)[x*√(x^2+1)+ln|√(x^2+1)+x|]+C
C为任意常数
∫√(1+x²) dx
=∫sec³t dt
=∫sect d(tant)
=sect*tant-∫tant d(sect)
=sect*tant-∫tan²t*sectdt
=sect*tant-∫基前(sec²t-1)*sectdt
=sect*tant-∫答锋友sec³tdt+∫sectdt
∴∫sec^3tdt=(1/2)(sect*tant+∫sectdt)
=(1/2)(sect*tant+ln|sect+tant|)+C
∴原式=(1/2)[x*√(x^2+1)+ln|√(x^2+1)+x|]+C
C为任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询