高一数学最后一题,帮帮我吧,要过程,谢啦,必修二的题,拜托了

 我来答
缑湃桐飞翰
2019-08-26 · TA获得超过3691个赞
知道大有可为答主
回答量:3091
采纳率:33%
帮助的人:199万
展开全部
解:
(1)求m的取值范围。
方程

+

+
x
-
6y
+
m
=
0
可化为:

+
x
+
1/4
+

-
6y
+
9
+
m
=
1/4
+
9
即:(x
+
1/2)²
+
(y
-
3)²
=
9
-
m
+
1/4
∵该方程表示一个圆
∴半径的平方应大于零
即:9
-
m
+
1/4

0

m

37/4
(2)若OP

OQ,求圆C方程,就是让求此时m的值。
本题中圆方程可化简为:
[x+(1/2)]²
+
(y-3)²
=(37-4m)/4
大凡求直线与圆的交点问题,一般需联立直线方程与圆方程得到方程组:

+

+
x
-
6y
+
m
=
0
x
+
2y
-
3
=
0

x
=
-
(2y
-
3)代入圆方程,得:
(2y-3)²
-
(2y-3)
+

-
6y
+
m
=
0

4y²
-
12y
+
9
-
2y
+
3
+

-
6y
+
m
=
0

5y²
-
20y
+
(m+12)
=
0
由“根与系数的关系”知:
y1
+
y2
=
4,
y1y2
=
(m+12)/5

x1x2
=
(-2y1
+
3)(-2y2
+
3)
=
4y1y2
-
6(y1
+
y2)
+
9
=
4(m
+
12)/5
-15

OP⊥OQ

直线OP与直线OQ的斜率之积为(-1)

Kop
×
Koq
=
-
1

(y1/x1)
×
(y2/x2)
=
-
1

y1y2
+
x1x2
=
0
∴(m+12)/5
+
[
4(m+12)/5
-15
]
=
0

m
+
12
-
15
=
0

m
=
3

圆C方程为

+

+
x
-
6y
+
3
=
0
(3)过(-2,4)作直线与圆C交于M、N两点,若|MN|
=
4,求直线MN的方程。
把圆C方程x²
+

+
x
-
6y
+
3
=
0
化为
(x
+
1/2)²
+
(y
-
3)²
=
25/4
易看出其圆心为(-1/2,3),半径为
5/2

弦MN满足
|MN|
=
4

弦长MN的一半为2
圆心(-1/2,3)到弦的距离d
=
√[(5/2)²
-2²]
=
3/2
(根据勾股定理、垂径定理)
设过点(-2,
4)的直线斜率为k
则该直线为:y
=
k(x+2)
+
4
进一步化简为:kx
-
y
+
2k
+
4
=
0
圆心(-1/2,3)到该直线的距离为
d
=
|k×(-1/2)
-
1×3
+
(2k+4)|/√(k²+1²)
=
3/2

|3k+2|/√(k²+1)
=
3

(3k
+
2)²
=
9(k²+1)

9k²
+
12k
+
4
=
9k²
+
9

12k
=
5

k
=
5/12
∴直线MN的方程为y
=
(5/12)(x
+
2)
+
4
即为:y
=
(5/12)x
+
29/6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式