
f''(x)>=0,证明0<=t<=1,有f[(1-t)x1+tx2]<=(1-t)f(x1)+tf(x2),
x∈(a,b),f(x)在(a,b)内二阶可导f''(x)≥0,证明0≤t≤1,有f[(1-t)x1+tx2]≤(1-t)f(x1)+tf(x2)。...
x∈(a,b),f(x)在(a,b)内二阶可导f''(x)≥0,证明0≤t≤1,有f[(1-t)x1+tx2]≤(1-t)f(x1)+tf(x2)。
展开
2个回答
展开全部
取点A(x1,f(x1)),B(x2,f(x2)),作AA1⊥x轴,BB1⊥x轴,连接AB,作直线L
x=(1-t)x1+tx2,交AB,x轴于C1,C2,直线AB在点x=(1-t)x1+tx2的函数值为y=(1-t)f(x1)+tf(x2)(这个是个几何问题,很好算的,自己作图算下吧),曲线函数值为f[(1-t)x1+tx2],由于f''(x)>=0,说明函数f(x)是凹函数,则必有y≥f[(1-t)x1+tx2]
x=(1-t)x1+tx2,交AB,x轴于C1,C2,直线AB在点x=(1-t)x1+tx2的函数值为y=(1-t)f(x1)+tf(x2)(这个是个几何问题,很好算的,自己作图算下吧),曲线函数值为f[(1-t)x1+tx2],由于f''(x)>=0,说明函数f(x)是凹函数,则必有y≥f[(1-t)x1+tx2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询