如何优化hibernate
展开全部
① 制定合理的缓存策略(二级缓存、查询缓存)。
② 采用合理的Session管理机制。
③ 尽量使用延迟加载特性。
④ 设定合理的批处理参数。
⑤ 如果可以,选用UUID作为主键生成器。
⑥ 如果可以,选用基于版本号的乐观锁替代悲观锁。
⑦ 在开发过程中, 开启hibernate.show_sql选项查看生成的SQL,从而了解底层的状况;开发完成后关闭此选项。
⑧ 考虑数据库本身的优化,合理的索引、恰当的数据分区策略等都会对持久层的性能带来可观的提升,但这些需要专业的DBA(数据库管理员)提供支持。
Hibernate的悲观锁和乐观锁机制。
有些业务逻辑在执行过程中要求对数据进行排他性的访问,于是需要通过一些机制保证在此过程中数据被锁住不会被外界修改,这就是所谓的锁机制。
Hibernate支持悲观锁和乐观锁两种锁机制。悲观锁,顾名思义悲观的认为在数据处理过程中极有可能存在修改数据的并发事务(包括本系统的其他事务或来自外部系统的事务),于是将处理的数据设置为锁定状态。悲观锁必须依赖数据库本身的锁机制才能真正保证数据访问的排他性,关于数据库的锁机制和事务隔离级别在《Java面试题大全(上)》中已经讨论过了。乐观锁,顾名思义,对并发事务持乐观态度(认为对数据的并发操作不会经常性的发生),通过更加宽松的锁机制来解决由于悲观锁排他性的数据访问对系统性能造成的严重影响。最常见的乐观锁是通过数据版本标识来实现的,读取数据时获得数据的版本号,更新数据时将此版本号加1,然后和数据库表对应记录的当前版本号进行比较,如果提交的数据版本号大于数据库中此记录的当前版本号则更新数据,否则认为是过期数据无法更新。Hibernate中通过Session的get()和load()方法从数据库中加载对象时可以通过参数指定使用悲观锁;而乐观锁可以通过给实体类加整型的版本字段再通过XML或@Version注解进行配置。
提示:使用乐观锁会增加了一个版本字段,很明显这需要额外的空间来存储这个版本字段,浪费了空间,但是乐观锁会让系统具有更好的并发性,这是对时间的节省。因此乐观锁也是典型的空间换时间的策略。
Hibernate的延迟加载机制。
延迟加载就是并不是在读取的时候就把数据加载进来,而是等到使用时再加载。Hibernate使用了虚拟代理机制实现延迟加载,我们使用Session的load()方法加载数据或者一对多关联映射在使用延迟加载的情况下从一的一方加载多的一方,得到的都是虚拟代理,简单的说返回给用户的并不是实体本身,而是实体对象的代理。代理对象在用户调用getter方法时才会去数据库加载数据。但加载数据就需要数据库连接。而当我们把会话关闭时,数据库连接就同时关闭了。
延迟加载与session关闭的矛盾一般可以这样处理:
①
关闭延迟加载特性。这种方式操作起来比较简单,因为Hibernate的延迟加载特性是可以通过映射文件或者注解进行配置的,但这种解决方案存在明显的缺陷。首先,出现"no
session or session was closed"通常说明系统中已经存在主外键关联,如果去掉延迟加载的话,每次查询的开销都会变得很大。
②
在session关闭之前先获取需要查询的数据,可以使用工具方法Hibernate.isInitialized()判断对象是否被加载,如果没有被加载则可以使用Hibernate.initialize()方法加载对象。
③
使用拦截器或过滤器延长Session的生命周期直到视图获得数据。Spring整合Hibernate提供的OpenSessionInViewFilter和OpenSessionInViewInterceptor就是这种做法。
Hibernate的一级缓存、二级缓存和查询缓存
Hibernate的Session提供了一级缓存的功能,默认总是有效的,当应用程序保存持久化实体、修改持久化实体时,Session并不会立即把这种改变提交到数据库,而是缓存在当前的Session中,除非显示调用了Session的flush()方法或通过close()方法关闭Session。通过一级缓存,可以减少程序与数据库的交互,从而提高数据库访问性能。
SessionFactory级别的二级缓存是全局性的,所有的Session可以共享这个二级缓存。不过二级缓存默认是关闭的,需要显示开启并指定需要使用哪种二级缓存实现类(可以使用第三方提供的实现)。一旦开启了二级缓存并设置了需要使用二级缓存的实体类,SessionFactory就会缓存访问过的该实体类的每个对象,除非缓存的数据超出了指定的缓存空间。
一级缓存和二级缓存都是对整个实体进行缓存,不会缓存普通属性,如果希望对普通属性进行缓存,可以使用查询缓存。查询缓存是将HQL或SQL语句以及它们的查询结果作为键值对进行缓存,对于同样的查询可以直接从缓存中获取数据。查询缓存默认也是关闭的,需要显示开启。
② 采用合理的Session管理机制。
③ 尽量使用延迟加载特性。
④ 设定合理的批处理参数。
⑤ 如果可以,选用UUID作为主键生成器。
⑥ 如果可以,选用基于版本号的乐观锁替代悲观锁。
⑦ 在开发过程中, 开启hibernate.show_sql选项查看生成的SQL,从而了解底层的状况;开发完成后关闭此选项。
⑧ 考虑数据库本身的优化,合理的索引、恰当的数据分区策略等都会对持久层的性能带来可观的提升,但这些需要专业的DBA(数据库管理员)提供支持。
Hibernate的悲观锁和乐观锁机制。
有些业务逻辑在执行过程中要求对数据进行排他性的访问,于是需要通过一些机制保证在此过程中数据被锁住不会被外界修改,这就是所谓的锁机制。
Hibernate支持悲观锁和乐观锁两种锁机制。悲观锁,顾名思义悲观的认为在数据处理过程中极有可能存在修改数据的并发事务(包括本系统的其他事务或来自外部系统的事务),于是将处理的数据设置为锁定状态。悲观锁必须依赖数据库本身的锁机制才能真正保证数据访问的排他性,关于数据库的锁机制和事务隔离级别在《Java面试题大全(上)》中已经讨论过了。乐观锁,顾名思义,对并发事务持乐观态度(认为对数据的并发操作不会经常性的发生),通过更加宽松的锁机制来解决由于悲观锁排他性的数据访问对系统性能造成的严重影响。最常见的乐观锁是通过数据版本标识来实现的,读取数据时获得数据的版本号,更新数据时将此版本号加1,然后和数据库表对应记录的当前版本号进行比较,如果提交的数据版本号大于数据库中此记录的当前版本号则更新数据,否则认为是过期数据无法更新。Hibernate中通过Session的get()和load()方法从数据库中加载对象时可以通过参数指定使用悲观锁;而乐观锁可以通过给实体类加整型的版本字段再通过XML或@Version注解进行配置。
提示:使用乐观锁会增加了一个版本字段,很明显这需要额外的空间来存储这个版本字段,浪费了空间,但是乐观锁会让系统具有更好的并发性,这是对时间的节省。因此乐观锁也是典型的空间换时间的策略。
Hibernate的延迟加载机制。
延迟加载就是并不是在读取的时候就把数据加载进来,而是等到使用时再加载。Hibernate使用了虚拟代理机制实现延迟加载,我们使用Session的load()方法加载数据或者一对多关联映射在使用延迟加载的情况下从一的一方加载多的一方,得到的都是虚拟代理,简单的说返回给用户的并不是实体本身,而是实体对象的代理。代理对象在用户调用getter方法时才会去数据库加载数据。但加载数据就需要数据库连接。而当我们把会话关闭时,数据库连接就同时关闭了。
延迟加载与session关闭的矛盾一般可以这样处理:
①
关闭延迟加载特性。这种方式操作起来比较简单,因为Hibernate的延迟加载特性是可以通过映射文件或者注解进行配置的,但这种解决方案存在明显的缺陷。首先,出现"no
session or session was closed"通常说明系统中已经存在主外键关联,如果去掉延迟加载的话,每次查询的开销都会变得很大。
②
在session关闭之前先获取需要查询的数据,可以使用工具方法Hibernate.isInitialized()判断对象是否被加载,如果没有被加载则可以使用Hibernate.initialize()方法加载对象。
③
使用拦截器或过滤器延长Session的生命周期直到视图获得数据。Spring整合Hibernate提供的OpenSessionInViewFilter和OpenSessionInViewInterceptor就是这种做法。
Hibernate的一级缓存、二级缓存和查询缓存
Hibernate的Session提供了一级缓存的功能,默认总是有效的,当应用程序保存持久化实体、修改持久化实体时,Session并不会立即把这种改变提交到数据库,而是缓存在当前的Session中,除非显示调用了Session的flush()方法或通过close()方法关闭Session。通过一级缓存,可以减少程序与数据库的交互,从而提高数据库访问性能。
SessionFactory级别的二级缓存是全局性的,所有的Session可以共享这个二级缓存。不过二级缓存默认是关闭的,需要显示开启并指定需要使用哪种二级缓存实现类(可以使用第三方提供的实现)。一旦开启了二级缓存并设置了需要使用二级缓存的实体类,SessionFactory就会缓存访问过的该实体类的每个对象,除非缓存的数据超出了指定的缓存空间。
一级缓存和二级缓存都是对整个实体进行缓存,不会缓存普通属性,如果希望对普通属性进行缓存,可以使用查询缓存。查询缓存是将HQL或SQL语句以及它们的查询结果作为键值对进行缓存,对于同样的查询可以直接从缓存中获取数据。查询缓存默认也是关闭的,需要显示开启。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询