2个回答
展开全部
求曲线 x=acos³t; y=asin³t; 0≦t≦π/2 的弧长;
解:dx/dt=-3acos²tsint=-(3a/2)sin2tcost; dy/dt=3asin²tcost=(3a/2)sin2tsint;
(dx/dt)²=(9a²/4)sin²2tcos²t; (dy/dt)²=(9a²/4)(sin²2t)•sin²t;
(dx/dt)²+(dy/dt)²=(9a²/4)sin²2t; √[(dx/dt)²+(dy/dt)²]=(3a/2)sin2t;
∴弧长S=∫<0,π/2>√[(dx/dt)²+(dy/dt)²]dt
=(3a/2)∫<0,π/2>sin2tdt
=(3a/4)∫<0,π/2>sin2td(2t)
=-(3a/4)cos(2t)∣<0,π/2>
=3a/4;
解:dx/dt=-3acos²tsint=-(3a/2)sin2tcost; dy/dt=3asin²tcost=(3a/2)sin2tsint;
(dx/dt)²=(9a²/4)sin²2tcos²t; (dy/dt)²=(9a²/4)(sin²2t)•sin²t;
(dx/dt)²+(dy/dt)²=(9a²/4)sin²2t; √[(dx/dt)²+(dy/dt)²]=(3a/2)sin2t;
∴弧长S=∫<0,π/2>√[(dx/dt)²+(dy/dt)²]dt
=(3a/2)∫<0,π/2>sin2tdt
=(3a/4)∫<0,π/2>sin2td(2t)
=-(3a/4)cos(2t)∣<0,π/2>
=3a/4;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询