高等数学,如图所示,请问为什么不能直接用x趋近于无穷大求?
一般减法不能用等价无穷小,为什么这道题可以?x在任何值的情况下x(1/x)应该都等于1,请问为什么不能扔?...
一般减法不能用等价无穷小,为什么这道题可以?x在任何值的情况下x(1/x)应该都等于1,请问为什么不能扔?
展开
4个回答
展开全部
题主需要注意的是:无穷小代换是等价代换而非精确替代,这是你所说“减法不能用等价无穷小”的原因所在。
但利用函数的泰勒公式则是精确替代:由于泰勒公式的形式总是f(x)=…的模样[而非等价无穷小的f(x) ∽ …(不是等号!)模样!],故无论是什么运算情况下,只要泰勒公式的条件被满足,都可以利用泰勒公式进行替换。
本题利用泰勒公式的解法前面的答主已做了正确解答。这里给出一个类似“观察法”的办法,希望能对题主及读者有益:
首先,-x那一项必须削掉才行。由于e^(1/x)泰勒公式首项是1,而ax与1的乘积是ax,所以必须a=1才能使ax与-x互相抵消。
其次,(x+ b)e^(1/x)中的项x与e(1/ x)泰勒公式的第二项1/x的乘积是1,项b与e^(1/x)泰勒公式的首项1的乘积是b,明显b+1要等于极限值2才行,即b+1=2.因此b=1.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
“一般减法不能用等价无穷小”这种“规律”本身就是对等价代码不精通人归纳得,不要深信
x(1/x) 如果严格是这两个式子乘积当然可以直接等于1,但是如果x或者1/x是等价代换过来得,就不一定
x(1/x) 如果严格是这两个式子乘积当然可以直接等于1,但是如果x或者1/x是等价代换过来得,就不一定
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高等数学比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论逻辑称为中等数学,作为小学初中的初等数学与本科阶段的高等数学的过渡。本科高等数学教学中可以分为A、B、C、D四个等级(某些学校以考研的分类分为1、2、3、4),其难度依次有所降低
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询