求解这道不定积分题
2个回答
展开全部
I = ∫x^2arccosxdx = (1/3)∫arccosxd(x^3)
= (1/3)x^3arccosx - (1/3)∫[-x^3/√(1-x^2)]dx
后者令 x = sint, 则
I2 = - (1/3)∫[-x^3/√(1-x^2)]dx = (1/3)∫[(sint)^3/cost]costdt
= (1/3)∫(sint)^3dt = (-1/3)∫[1-(cost)^2]dcost
= (-1/3)[cost-(1/3)(cost)^3]
= - (1/3)√(1-x^2) + (1/9)(1-x^2)^(3/2)
得 I = (1/3)x^3arccosx - (1/3)√(1-x^2) + (1/9)(1-x^2)^(3/2) + C
= (1/3)x^3arccosx - (1/3)∫[-x^3/√(1-x^2)]dx
后者令 x = sint, 则
I2 = - (1/3)∫[-x^3/√(1-x^2)]dx = (1/3)∫[(sint)^3/cost]costdt
= (1/3)∫(sint)^3dt = (-1/3)∫[1-(cost)^2]dcost
= (-1/3)[cost-(1/3)(cost)^3]
= - (1/3)√(1-x^2) + (1/9)(1-x^2)^(3/2)
得 I = (1/3)x^3arccosx - (1/3)√(1-x^2) + (1/9)(1-x^2)^(3/2) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询