定义域是什么
定义域是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域主要包括三种题型:抽象函数,一般函数,函数应用题。含义是指自变量x的取值范围。
定义域定义
定义一:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
定义二:A,B是两个非空数集,从集合A到集合B的一个映射,叫做从集合A到集合B的一个函数。记作y=f(x)或y=g(t),t∈A。其中A就叫做定义域。通常,用字母D表示。通常定义域是F(X)中x的取值范围。
1,给定定义域:例如:函数y=2x-1,x∈{1,2}的定义域为给定的集合{1,2}。
2,一般函数的定义域:使函数有意义的一切实数。例如:函数y=1/x的定义域为{x∈R|x≠0}。R为任意实数。
3,实际问题:根据具体情况求定义域。
4,当然,也会运用到动力物理学中求变量
函数定义域
数学名词,是函数的三要素(定义域、值域、对应法则)之一,对应法则的作用对象。指函数自变量的取值范围,即对于两个存在函数对应关系的非空集合D、M,集合D中的任意一个数,在集合M中都有且仅有一个确定的数与之对应,则集合D称为函数定义域。