粒子群算法简单介绍

 我来答
世纪网络17
2022-07-09 · TA获得超过5948个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:142万
展开全部
粒子群算法(也称粒子群优化算法(particle swarm optimization, PSO)),模拟鸟群随机搜索食物的行为。粒子群算法中,每个优化问题的潜在解都是搜索空间中的一只鸟,叫做“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定它们“飞行”的方向和距离。

粒子群算法初始化为一群随机的粒子(随机解),然后根据迭代找到最优解。每一次迭代中,粒子通过跟踪两个极值来更新自己:第1个是粒子本身所找到的最优解,这个称为个体极值;第2个是整个种群目前找到的最优解,这个称为全局极值。也可以不用整个种群,而是用其中的一部分作为粒子的邻居,称为局部极值。

假设在一个D维搜索空间中,有N个粒子组成一个群落,其中第i个粒子表示为一个D维的向量:

第i个粒子的速度表示为:

还要保存每个个体的已经找到的最优解 ,和一个整个群落找到的最优解 。

第i个粒子根据下面的公式更新自己的速度和位置:

其中, 是个体已知最优解, 是种群已知最优解, 为惯性权重, , 为学习因子(或加速常数 acceleration constant), , 是[0,1]范围内的随机数。

式(1)由三部分组成:
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
苏州千视通视觉科技股份有限公司_
2024-11-04 广告
千视通是国内第一梯队推出多模态AI大模型网关和边缘大模型一体机产品方案的领先AI企业。 拥有行业领先的多模态视觉语言大模型技术,践行“Make high-quality AI quickly”理念,平台基于多模态预训练,支持用户自定义算法可... 点击进入详情页
本回答由苏州千视通视觉科技股份有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式