连续是可微的充分不必要条件,即:
偏导数存在且连续则函数可微,函数可微推不出偏导数存在且连续。且所有偏导数于此点连续。全微分于某点存在的必要条件:该点处所有方向导数存在。
1、若二元函数f在其
定义域内某点可微,则二元函数f在该点偏导数存在,反过来则不一定成立。
2、若二元函数函数f在其定义域内的某点可微,则二元函数f在该点连续,反过来则不一定成立。
3、二元函数f在其定义域内某点是否连续与偏导数是否存在无关。
4、可微的
充要条件:函数的偏导数在某点的某邻域内存在且连续,则二元函数f在该点可微。