试证:对任意正整数n,有1/(1*2*3)+1/(2*3*4)+…+1/(n(n+1)(n+2))

 我来答
机器1718
2022-07-11 · TA获得超过6827个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:160万
展开全部
因为1/(1*2*3)=(1/2)*[1/(1*2)-1/(2*3)],
1/(2*3*4)=(1/2)*[1/(2*3)-1/(3*4)],
...
(可以把右边通分,证明等式成立)
所以1/(1*2*3)+1/(2*3*4)+...+1/n(n+1)(n+2)
=(1/2)*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+...+1/n(n+1)-1/(n+1)(n+2)]
=(1/2)*[1/2-1/(n+1)(n+2)]
=1/4-1/2(n+1)(n+2)
因为1/2(n+1)(n+2)>0,所以式子左边=1/4-1/2(n+1)(n+2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式