试证:对任意正整数n,有1/(1*2*3)+1/(2*3*4)+…+1/(n(n+1)(n+2))
1个回答
展开全部
因为1/(1*2*3)=(1/2)*[1/(1*2)-1/(2*3)],
1/(2*3*4)=(1/2)*[1/(2*3)-1/(3*4)],
...
(可以把右边通分,证明等式成立)
所以1/(1*2*3)+1/(2*3*4)+...+1/n(n+1)(n+2)
=(1/2)*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+...+1/n(n+1)-1/(n+1)(n+2)]
=(1/2)*[1/2-1/(n+1)(n+2)]
=1/4-1/2(n+1)(n+2)
因为1/2(n+1)(n+2)>0,所以式子左边=1/4-1/2(n+1)(n+2)
1/(2*3*4)=(1/2)*[1/(2*3)-1/(3*4)],
...
(可以把右边通分,证明等式成立)
所以1/(1*2*3)+1/(2*3*4)+...+1/n(n+1)(n+2)
=(1/2)*[1/(1*2)-1/(2*3)+1/(2*3)-1/(3*4)+...+1/n(n+1)-1/(n+1)(n+2)]
=(1/2)*[1/2-1/(n+1)(n+2)]
=1/4-1/2(n+1)(n+2)
因为1/2(n+1)(n+2)>0,所以式子左边=1/4-1/2(n+1)(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询