数据标准化

 我来答
户如乐9318
2022-07-07 · TA获得超过6678个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
据的标准化(normalization)是将数据按照一定规则缩放,使之落入一个小的特定区间。这样去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是0-1标准化和Z标准化,当然,也有一些其他的标准化方法,用在不同场景,这里主要介绍几种常用的方法。

1、Min-Max标准化(Min-Max normalization)

也称离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:

yi=xi−min{xj}max{xj}−min{xj},(1≤i≤n,1≤j≤n)

其中max{xj}为样本数据的最大值,min{xj}为样本数据的最小值。这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

2、Z-score 标准化(zero-mean normalization)

也叫标准差标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:

yi=xi−x¯s,(1≤i≤n)

其中x¯为所有样本数据的均值,s 为所有样本数据的标准差。

经过 Z-score 标准化后,各变量将有约一半观察值的数值小于0,另一半观察值的数值大于0,变量的平均数为0,标准差为1。经标准化的数据都是没有单位的纯数量。它是当前用得最多的数据标准化方法。如果特征非常稀疏,并且有大量的0(现实应用中很多特征都具有这个特点),Z-score 标准化的过程几乎就是一个除0的过程,结果不可预料。

3、归一标准化

yi=xi∑n1x2i,(1≤i≤n)

则新序列y1,y2,…,yn∈[0,1]且无量纲并且显然有∑niyi=1.

归一化方法在确定权重时经常用到。针对实际情况,也可能有其他一些量化方法,或者要综合使用多种方法,总之最后的结果都是无量纲化。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式