什么是逆矩阵?
3个回答
展开全部
具体回答如下:
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
性质定理:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
扩展资料:
若|A|≠0,则矩阵A可逆,且其中,A*为矩阵A的伴随矩阵。
证明:
必要性:当矩阵A可逆,则有AA-1=I 。(其中I是单位矩阵)
两边取行列式,det(AA-1)=det(I)=1。
由行列式的性质:det(AA-1)=det(A)det(A-1)=1则det(A)≠0,(若等于0则上式等于0)
参考资料:百度百科——逆矩阵
展开全部
逆矩阵是满足以下关系的矩阵:A * A-1 = I,其中A-1是A的逆矩阵,I是3x3的单位矩阵,它的元素都是1,对角线上的元素为1,其 余元素均为0。A-1的元素也可以通过求解矩阵式形成,它是A的逆运算。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
逆矩阵: 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
可逆条件:
A是可逆矩阵的充分必要条件是∣A∣≠0,即可逆矩阵就是非奇异矩阵。(当∣A∣=0时,A称为奇异矩阵)
可逆条件:
A是可逆矩阵的充分必要条件是∣A∣≠0,即可逆矩阵就是非奇异矩阵。(当∣A∣=0时,A称为奇异矩阵)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询