
用任意角的三角比定义证明:函数f(x)=sinx+tanx是奇函数 请给予过程.
1个回答
展开全部
设任意角x终边上一点P(m,n),r=√(m^2+n^2)>0
函数f(x)=sinx+tanx
=n/r+n/m
角x的终边与角-x的终边关于x轴对称,
点P(m,n)关于x轴对称的点Q(m,-n)
即角-x终边上一点Q(m,-n),r=√(m^2+n^2)>0
f(-x)=sin(-x)+tan(-x)
=-n/r-n/m
=-(n/r+n/m)
=-f(x)
函数f(x)=sinx+tanx是奇函数
函数f(x)=sinx+tanx
=n/r+n/m
角x的终边与角-x的终边关于x轴对称,
点P(m,n)关于x轴对称的点Q(m,-n)
即角-x终边上一点Q(m,-n),r=√(m^2+n^2)>0
f(-x)=sin(-x)+tan(-x)
=-n/r-n/m
=-(n/r+n/m)
=-f(x)
函数f(x)=sinx+tanx是奇函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询