一元二次方程解法
一元二次方程解法有直接开平方法、配方法、公式法、因式分解法。
1、直接开平方法:依据的是平方根的意义,步骤是:①将方程转化为x=p或(mx+n)=p的形式;②分三种情况降次求解:①当p>0时;②当p=0时;③当p<0时,方程无实数根。
需要注意的是:直接开平方法只适用于部分的一元二次方程,它适用的方程能转化为x=p或(mx+n)=p的形式,其中p为常数,当p≥0时,开方时要取“正、负。
2、配方法:把一般形式的一元二次方程ax+bx+c=0(a≥0)左端配成一个含有未知数的完全平方式,右端是一个非负常数,进而可用直接开平方法来求解。一般步骤:移项、二次项系数化成1,配方,开平方根。配方法适用于解所有一元二次方程。
3、公式法:利用求根公式,直接求解。把一元二次方程的各系数代入求根公式,直接求出方程的解。
一般步骤为:把方程化为一般形式;确定a、b、c的值;计算b-4ac的值;当b-4ac≥0时,把a、b、c及b-4ac的值代入一元二次方程的求根公式,求得方程的根;当b-4ac<0时,方程没有实数根。
4、因式分解法:先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次。
一般步骤为:移项:将方程的右边化为0;化积:把左边因式分解成两个一次式的积;转化:令每个一次式都等于0,转化为两个一元一次方程。