罗尔定理的推论

 我来答
zzanF
2022-12-13 · TA获得超过637个赞
知道大有可为答主
回答量:3492
采纳率:100%
帮助的人:55.7万
展开全部

罗尔定理的推论如下:

罗尔定理描述如下:

如果R上的函数f(x)满足以下条件:在闭区间[a,b]上连续,在开区间(a,b)内可导,f(a)=f(b),则至少存在一个ξ∈(a,b),使得f'(ξ)=0。

若连续曲线y=f(x)在区间[a,b]上所对应的弧段AB,除端点外处处具有不垂直于x轴的切线,且在弧的两个端点A,B处的纵坐标相等,则在弧AB上至少有一点C,使曲线在C点处的切线平行于x轴。

证明过程:

证明:因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:

1. 若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。

2. 若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理,可导的极值点一定是驻点,推知:f'(ξ)=0。

另证:若 M>m ,不妨设f(ξ)=M,ξ∈(a,b),由可导条件知,f'(ξ+)<=0,f'(ξ-)>=0,又由极限存在定理知左右极限均为 0,得证。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式