二阶常系数线性微分方程

 我来答
叶月yfy
2022-12-15 · 超过105用户采纳过TA的回答
知道小有建树答主
回答量:249
采纳率:100%
帮助的人:4万
展开全部

二阶常系数线性微分方程一般形式y'' +p y' + qy = f(x)①

(下面用到r1、r2、y1、y2、C1、C2)

一、二阶常系数齐次线性方程

其一般形式y'' + py' + qy = 0  ②

即①式中的f(x) = 0,求该式通解,直接运用定理得知②的通解:y = C1y1(x) + C2y2(x)

接着只需求解出y1(x)和y2(x)的解就ok了。

可以将②式写成 (也可理解将y的n次导看成r的n次方)(r^2 + p*r + q)e^rx = 0  => (r^2 + p*r + q) = 0】③,接着就是求解方程③(称为特征方程)的根r1、r2,

该特征方程求根可以分成三种情况去讨论:

1.p^2 - 4q > 0 ,③式有两个不相等的根r1、r2,即y = C1*e^r1x + C2*e^r2x 

2.p^2 - 4q = 0 ,③式有两个相等的根r,即y = C1*e^rx + C2*xe^rx 

3.p^2 - 4q < 0 ,③式有一对共轭复根(无实数根),即y=e^αx (C1*cosβx + C2*sinβx)

其中α = -(b/2a) ,β = (√-△) / 2a  .】 (注: a,b为特征方程项系数 ,△为p^2 - 4q)

二、二阶常系数非齐次线性方程

其一般形式y'' +p y' + qy = f(x)     即f(x) ≠0

该方程的通解为y = Y(x) + y* (Y(x) 为②式,即齐次方程的通解;y*为 ①式的特解)

第一步,求②式(齐次方程)通解,(参照上面一的方法)

第二步,求①式特解。根据①式根据f(x)类型分成两种求解方式 :1.f(x) = P(x) * e^(λx)

特解: y* = x^k * Pm(x) * e^λx】④(Pm(x) 为与P(x)同次的多项式,k是根据λ 不是③式的根(特征根)、单根、重复根依次取值为0,1,2)

2.f(x) = e^λx * [ Pl(x)cosωx + Qn(x)sinωx]               

特解: y* = x^k * eλx [Pl(x)cosω+Ql(x)sinωx]】  ⑤

( l=max(l,n),k是根据λ+iω不是③式的根(特征根)、单根依次取值为0,1 ; i是虚数)

最后将特解带入原方程式①中,即可解得Pm(x)的具体方程式 。y = Y(x) + y* 就求出来了。

上海华然企业咨询
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式