角平分线怎么证明
展开全部
用三角形全等,即在L线(即将证明的角平分线)上去一个点O,过这个点作线段OP,OM分别垂直于角的两边过两边的P、M点,(也就是说做成了两个三角形)再通过直角三角形的全等方法HL就可证明啦。
角平分线定理:
角平分线定理1:是描述角平分线上的点到角两边距离定量关系的定理,也可看作是角平分线的性质。
角平分线定理2:是将角平分线放到三角形中研究得出的线段等比例关系的定理,由它以及相关公式还可以推导出三角形内角平分线长与各线段间的定量关系。
定理定义:
从一个角的顶点引出的把这个角分成两个相等的角的射线,叫做这个角的角平分线。
三角形的一个角(内角)的角平分线交其对边的点所连成的线段,叫做这个三角形的一条角平分线。
定理1:
角平分线上的点到这个角两边的距离相等。
逆定理:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。
定理2:
三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。
角平分线长:
由定理2和斯台沃特定理可以推导出三角形内的角平分线长公式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询