8个常见分布期望和方差

 我来答
帐号已注销
2022-12-22 · TA获得超过442个赞
知道小有建树答主
回答量:4969
采纳率:0%
帮助的人:115万
展开全部

八大常见分布的期望和方差如下:

1、0-1分布:E(X)=p,D(X)=p(1-p)。
2、二项分布B(n,p):P(X=k)=C(k\n)p^k·(1-p)^(n-k),E(X)=np,D(X)=np(1-p)。
3、泊松分布X~P(X=k)=(λ^k/k!)·e^-λ,E(X)=λ,D(X)=λ。

4、均匀分布U(a,b):X~f(x)=1/(b-a),a0;E(X)=1/λ,D(X)=θ^2。
6、正态分布N(μ,σ^2):f(x)=(1/√(2π)σ)e^-((x-μ)^2/2σ^2),E(X)=μ,D(X)=σ^2。


扩展资料:
在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用度量随机变量和其数学期望(即均值)之间的偏离程度。


统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
在许多实际问题中,研究方差即偏离程度有着重要意义。
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)。

若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式