设x/z=ln*z/y ,求az/ax,az/ay,a²z/axay?
1个回答
展开全部
设x/z=ln(z/y) ,求∂z/∂x;∂z/∂y;∂²z/∂x∂y;
由x/z=ln(z/y)得x=z(lnz-lny);
即有F(x,y,z)=z(lnz-lny)-x=0
故∂z/∂x=-(∂F/∂X)/(∂F/∂z)=1/[(lnz-lny)+z(1/z)]=1/(lnz-lny+1)
∂z/∂y=-(∂F/∂y)/(∂F/∂z)=(z/y)/[ln(z/y)+1]=z/[y(lnz-lny+1)]
,8,
由x/z=ln(z/y)得x=z(lnz-lny);
即有F(x,y,z)=z(lnz-lny)-x=0
故∂z/∂x=-(∂F/∂X)/(∂F/∂z)=1/[(lnz-lny)+z(1/z)]=1/(lnz-lny+1)
∂z/∂y=-(∂F/∂y)/(∂F/∂z)=(z/y)/[ln(z/y)+1]=z/[y(lnz-lny+1)]
,8,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询