求[arctan(1/x)]/[1+(x^2)]的不定积分
2个回答
展开全部
∫arctan(1/x)/(1+x²)dx
=∫arctanx(1/x)d(arctanx)
=arctan(1/x)arctanx-∫arctanx·(-1/x²)/[1+(1/x)²]dx
=arctan(1/x)arctanx+∫arctanx[1/(1+x²)]dx
=arctan(1/x)arctanx+∫arctanxd(arctanx)
=arctan(1/x)arctanx+(arctanx)²/2+C
=∫arctanx(1/x)d(arctanx)
=arctan(1/x)arctanx-∫arctanx·(-1/x²)/[1+(1/x)²]dx
=arctan(1/x)arctanx+∫arctanx[1/(1+x²)]dx
=arctan(1/x)arctanx+∫arctanxd(arctanx)
=arctan(1/x)arctanx+(arctanx)²/2+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询