三角形的角平分线是什么线
三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段叫三角形的角平分线。三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。
如:图中的线段AD就是三角形ABC的一条角平分线。
角的平分线是一条(射线),三角形的角平分线是一条(线段)。
从一个角的顶点引出一条射线(线在角内),把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
三角形角平分线定理内容是:
1、角平分线上的点到这个角两边的距离相等。
2、三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。
角平分线定理1是描述角平分线上的点到角两边距离定量关系的定理,也可看作是角平分线的性质。
角平分线定理2是将角平分线放到三角形中研究得出的线段等比例关系的定理,由它以及相关公式还可以推导出三角形内角平分线长与各线段间的定量关系。
扩展资料
三角形内角平分线性质定理:在ΔABC中,若AD是∠A的平分线,则BD/DC=AB/AC。
应用:不用计算即可将一条线段按要求分成任意比例。
三角形内角平分线内分对边,所得的两条线段与这个角的两边对应成比例。
三角形外角平分线的性质定理:三角形外角平分线外分对边,所得的两条线段与其内角的两边对应成比例。
可通过三角函数证明:三角形ACD面积=1/2*AC*AD*sinCAD;三角形BAD面积=1/2*AB*AD*sinBAD,又有两个三角形面积比等于CD/BD,故结论得证。
2024-11-13 广告