二项分布和超几何分布
二项分布和超几何分布都是高中内容。
二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这种单次成功/失败试验被称为伯努利试验,而当n=1时,二项分布就是伯努利分布。二项分布是显著性差异的二项试验的基础,可以帮助我们了解和监控生产实践过程中由于某些因素而导致的波动。
超几何分布是统计学上一种离散概率分布。它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。超几何分布中的参数是N,n,M,上述超几何分布记作X~H(N,n,M)。
统计学定义:
在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。
在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某传染源的感染与未感染等。二项分布(binomial distribution)就是对这类只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。