多元线性回归模型与一元线性回归模型有哪些区别?
2023-09-05 · 百度认证:SPSSAU官方账号,优质教育领域创作者
多元线性回归模型与一元线性回归模型有哪些区别?
多元线性回归考察的是多个自变量对因变量的影响,一元线性回归模型考察的是一个自变量对因变量的影响。
线性回归分析模型效果的结果如下:
从上表可以看出,离差平方和为162.149,残差平方和为152.062,而回归平方和为10.086。回归方程的显著性检验中,统计量F=2.574,对应的p值小于0.05,被解释变量的线性关系是显著的,可以建立模型。建立模型后,需要查看模型拟合优度是否可以,其中就可以查看R方与调整R方值。
拟合优度:
从上表可知,将社会资源, 教育水平, 科技发展作为自变量,而将创业可能性作为因变量进行线性回归分析,从上表可以看出,模型R方值为0.062,调整R方为0.038,其中R方是决定系数,模型拟合指标。反应Y的波动有多少比例能被X的波动描述。调整R方也是模型拟合指标。当x个数较多是调整R²比R²更为准确。意味着社会资源, 教育水平, 科技发展可以解释创业可能性的6.2%变化原因。可见,模型拟合优度一般,说明被解释变量可以被模型解释的部分较少。接下来查看变量是否具有多重共线性。
VIF值用于检测共线性问题,一般VIF值小于10即说明没有共线性(严格的标准是5),有时候会以容差值作为标准,容差值=1/VIF,所以容差值大于0.1则说明没有共线性(严格是大于0.2),VIF和容差值有逻辑对应关系,因此二选一即可,一般描述VIF值。在【线性回归】分析时,SPSSAU会智能判断共线性问题并且提供解决建议。 结果中可以看出,变量的VIF值均小于5,所以此案例不存在多重共线性的问题。
从上表可知,将教育水平,社会资源,科技发展,性别,年龄作为自变量,而将创业可能性作为因变量进行线性回归分析,从上表可以看出,模型公式为:创业可能性=2.114 + 0.251*教育水平 + 0.026*社会资源 + 0.013*科技发展-0.172*性别 + 0.024*年龄。
最终分析可知:教育水平的回归系数值为0.251(t=2.934,p=0.004<0.01),意味着教育水平会对创业可能性产生显著的正向影响关系。社会资源的回归系数值为0.026(t=0.271,p=0.787>0.05),意味着社会资源并不会对创业可能性产生影响关系。科技发展的回归系数值为0.013(t=0.140,p=0.889>0.05),意味着科技发展并不会对创业可能性产生影响关系。
性别的回归系数值为-0.172(t=-1.212,p=0.227>0.05),意味着性别并不会对创业可能性产生影响关系。年龄的回归系数值为0.024(t=0.297,p=0.767>0.05),意味着年龄并不会对创业可能性产生影响关系。
总结分析可知:教育水平会对创业可能性产生显著的正向影响关系。但是社会资源, 科技发展, 性别, 年龄并不会对创业可能性产生影响关系。
如果说自变量X已经对因变量Y产生显著影响(P< 0.05),还想对比影响大小,建议可使用标准化系数值的大小对比影响大小,Beta值大于0时正向影响,该值越大说明影响越大。Beta值小于0时负向影响,该值越小说明影响越大。上图所示,回归方程的常数项约为2.114,教育水平,社会资源,科技发展,性别,年龄的标准化系数分别为0.218、0.022、0.011、-0.085、0.021。可以看出模型中教育水平对创业可能性影响较大。
2024-11-22 广告
多元线性回归模型与一元线性回归模型区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估计式的表达更为复杂。
多元线性回归模型,(multivariable linear regression model )在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响。
多元线性回归模型的一般形式为Yi=β0+β1X1i+β2X2i+…+βkXki+μi i=1,2,…,n 其中 k为解释变量的数目,βj(j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为 E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki
一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元线性回归。