如何求过圆外一点的圆的切线方程?
1个回答
展开全部
过圆上一点的切线方程是(x₁-a)(x-a)+(y₁-b)(y-b)=r²。众所周知,圆x2+y2=r2上一点M(x0,y0)的切线方程为x0x+y0y=r2,它有着很优美的结构,本文将对它进行变式和引申,以探求其他更多优美的结论。
点P(x1,y1), 圆心为O(a,b),则(x1-a)²+(y1-b)²=r²直线OP的斜率为:k(OP)=(y1-b)/(x1-a) ,切线的斜率为:k=1/k(OP)=(x1-a)/(y1-b),切线方程为:y-y1=(x1-a)/(y1-b) ×(x-x1)。
圆的切线:
垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:
(1)经过切点垂直于过切点的半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询