求函数f(x)=(1-x)/(1+x)在x=0处带拉格朗日型余项的n阶泰勒展开式
1个回答
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
过程如下:
令t=x-1,则有x=t+1,展开为x0=1处的泰勒公式即相当于展开为t的公式:
f(x)=1/x
=1/(1+t)
=1-t+t^2-t^3+t^4-...+(-1)^n t^n+ R(n)t^(n+1)
f^(n)(t)=(-1)^n *n!/(1+t)^(n+1)
f^(ζ)=(-1)^n*n!/(1+ζ)^(n+1)
R(n)=(-1)^n/(1+ζ)^(n+1)
扩展资料:
泰勒公式的余项Rn(x)可以写成以下几种不同的形式:
1、佩亚诺(Peano)余项:
这里只需要n阶导数存在。
2、施勒米尔希-罗什(Schlomilch-Roche)余项:
其中θ∈(0,1),p为任意正整数。(注意到p=n+1与p=1分别对应拉格朗日余项与柯西余项)
3、拉格朗日(Lagrange)余项:
其中θ∈(0,1)。
4、柯西(Cauchy)余项:
其中θ∈(0,1)。
5、积分余项:
其中以上诸多余项事实上很多是等价的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询