参数函数求微分 x=a(t-sint) y=a(1-cost)
1个回答
展开全部
摆线的参数方程
dx/dt=a(1-cost)
dy/dt=asint
y'=dy/dx=(dy/dt)/(dx/dt)=sint/(1-cost)
dy'/dt=[cost(1-cost)-sint(sint)]/(1-cost)^2=(cost-1)/(1-cost)^2=-1/(1-cost)
y"=dy'/dx=(dy'/dt)/(dx/dt)=-1/(1-cost)/[a(1-cost)]=-1/[a(1-cost)^2]
dx/dt=a(1-cost)
dy/dt=asint
y'=dy/dx=(dy/dt)/(dx/dt)=sint/(1-cost)
dy'/dt=[cost(1-cost)-sint(sint)]/(1-cost)^2=(cost-1)/(1-cost)^2=-1/(1-cost)
y"=dy'/dx=(dy'/dt)/(dx/dt)=-1/(1-cost)/[a(1-cost)]=-1/[a(1-cost)^2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询