如图,P为正方形ABCD的BC边上一点,AQ平分∠DAP交CD于点Q,求:AP=BP+DQ

 我来答
吃吃喝莫吃亏9728
2022-07-18 · TA获得超过856个赞
知道小有建树答主
回答量:314
采纳率:92%
帮助的人:63.4万
展开全部
延长PB至点E,使BE=DQ,则有
△AEB≌△AQD
得∠AEB=∠AQD,∠BAE=∠DAQ
∵AB//CD
∴∠BAP+∠PAQ=∠BAQ=∠AQD
∵AQ平分角DAP交CD于点Q
∴∠BAQ=∠BAP+∠DAQ=∠BAP+∠BAE=∠EAP
∴∠EAP=∠AEB
∴AP=EP=EB+BP=DQ+BP
采纳我采纳我吧~我可没有写∠1∠2哦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式