贝叶斯统计与经典统计的主要区别

 我来答
妖感肉灵10
2022-11-17 · TA获得超过6.4万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.4亿
展开全部

一、是否利用先验信息

由于产品的设计、生产都有一定的继承性,这样就存在许多相关产品的信息以及先验信息可以利用,贝叶斯统计学派认为利用这些先验信息不仅可以减少样本容量,而且在很多情况还可以提高统计精度;而经典统计学派忽略了这些信息。

二、是否将参数e看成随机变量

贝叶斯统计学派的最基本的观点是:任一未知量e都可以看成随机变量,可以用一个概率分布去描述,这个分布就是先验分布。因为任一未知量都具有不确定性,而在表述不确定性时,概率与概率分布是最好的语言;相反,经典统计学派却把未知量e就简单看成一个未知参数,来对其进行统计推断。

扩展资料

贝叶斯统计技术原理

1、先验分布

先验分是总体分布参数θ的一个概率分布。贝叶斯学派的根本观点,是认为在关于θ的任何统计推断问题中,除了使用样本X所提供的信息外,还必须对θ规定一个先验分布,它是在进行推断时不可或缺的一个要素。

贝叶斯学派把先验分布解释为在抽样前就有的关于θ的先验信息的概率表述,先验分布不必有客观的依据,它可以部分地或完全地基于主观信念。

2、后验分布

根据样本 X 的分布Pθ及θ的先验分布π(θ),用概率论中求条件概率分布的方法,可算出在已知X=x的条件下,θ的条件分布 π(θ|x)。因为这个分布是在抽样以后才得到的,故称为后验分布。贝叶斯学派认为:这个分布综合了样本X及先验分布π(θ)所提供的有关的信息。

抽样的全部目的,就在于完成由先验分布到后验分布的转换。如上例,设p=P(θ=1)=0.001,而π(θ=1|x)=0.86,则贝叶斯学派解释为:在某甲的指标量出之前,他患病的可能性定为0.001,而在得到X后,认识发生了变化:其患病的可能性提高为0.86。

这一点的实现既与X有关,也离不开先验分布。计算后验分布的公式本质上就是概率论中著名的贝叶斯公式(见概率),这公式正是上面提到的贝叶斯1763年的文章的一个重要内容。

汇纳科技
2024-08-29 广告
汇纳科技股份有限公司在客流统计分析领域拥有深厚的技术积累,我们利用先进的视频分析、大数据及AI算法,精准捕捉并实时分析商业场所的顾客流动情况。通过对进店率、驻留时长、热点区域分布等关键指标的深入洞察,为商家提供科学决策依据,助力其优化运营管... 点击进入详情页
本回答由汇纳科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式