贝叶斯统计与经典统计的主要区别
一、是否利用先验信息
由于产品的设计、生产都有一定的继承性,这样就存在许多相关产品的信息以及先验信息可以利用,贝叶斯统计学派认为利用这些先验信息不仅可以减少样本容量,而且在很多情况还可以提高统计精度;而经典统计学派忽略了这些信息。
二、是否将参数e看成随机变量
贝叶斯统计学派的最基本的观点是:任一未知量e都可以看成随机变量,可以用一个概率分布去描述,这个分布就是先验分布。因为任一未知量都具有不确定性,而在表述不确定性时,概率与概率分布是最好的语言;相反,经典统计学派却把未知量e就简单看成一个未知参数,来对其进行统计推断。
扩展资料
贝叶斯统计技术原理
1、先验分布
先验分是总体分布参数θ的一个概率分布。贝叶斯学派的根本观点,是认为在关于θ的任何统计推断问题中,除了使用样本X所提供的信息外,还必须对θ规定一个先验分布,它是在进行推断时不可或缺的一个要素。
贝叶斯学派把先验分布解释为在抽样前就有的关于θ的先验信息的概率表述,先验分布不必有客观的依据,它可以部分地或完全地基于主观信念。
2、后验分布
根据样本 X 的分布Pθ及θ的先验分布π(θ),用概率论中求条件概率分布的方法,可算出在已知X=x的条件下,θ的条件分布 π(θ|x)。因为这个分布是在抽样以后才得到的,故称为后验分布。贝叶斯学派认为:这个分布综合了样本X及先验分布π(θ)所提供的有关的信息。
抽样的全部目的,就在于完成由先验分布到后验分布的转换。如上例,设p=P(θ=1)=0.001,而π(θ=1|x)=0.86,则贝叶斯学派解释为:在某甲的指标量出之前,他患病的可能性定为0.001,而在得到X后,认识发生了变化:其患病的可能性提高为0.86。
这一点的实现既与X有关,也离不开先验分布。计算后验分布的公式本质上就是概率论中著名的贝叶斯公式(见概率),这公式正是上面提到的贝叶斯1763年的文章的一个重要内容。
2024-08-29 广告