导数切线方程如何求?
1个回答
展开全部
导数切线方程的求法如下:
1、先求出函数在(x0,y0)点的导数值导数值就是函数在X0点的切线的斜率值.之后代入该点坐标(x0,y0),用点斜式就可以求得切线方程。
2、当导数值为0,改点的切线就是y=y0;当导数不存在,切线就是x=x0;当在该点不可导,则不存在切线。
3、如果某点在曲线上,设曲线方程为y=f(x),曲线上某点为(a,f(a))。求曲线方程求导,得到f'(x),将某点代入,得到f'(a),此即为过点(a,f(a))的切线斜率,由直线的点斜式方程,得到切线的方程。y-f(a)=f'(a)(x-a)。
基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
2、两个函数的乘积的导函数:一导乘二+一乘二导。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
4、如果有复合函数,则用链式法则求导。
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询