
两个数列公共项组成新数列怎么求它的前n项和
2023-01-28
A(n) = 2(n+1)/(3ⁿ-1)
这个数列迄今为止还没有找到求和公式。
如果要求和,只能通过手工计算,或者编程求解。
写了一段fortran代码,因为随着n的增大,分母增加很快,需要更多位小数才能观察到这些变化。因此,使用了大整数模块来计算出更多有效数字。输出的结果,小数点后65位。
下面是n=1到100的计算结果:
n = 1,S = 2.0000000000000000000000000000000000000000000000000000000000000000;
n = 2,S = 2.7500000000000000000000000000000000000000000000000000000000000000;
n = 3,S = 3.0576923076923076923076923076923076923076923076923076923076923076;
n = 4,S = 3.1826923076923076923076923076923076923076923076923076923076923076;
n = 5,S = 3.2322790845518118245390972663699936427209154481881754609027336300;
n = 6,S = 3.2515098537825810553083280356007628734901462174189446916719643992;
n = 7,S = 3.2588291584486377799194899752164993785221681753329428618457978850;
n = 8,S = 3.2615730608876621701633924142408896224246071997231867642848222752;
n = 9,S = 3.2625892177822867001908286503957519331653855759044691542858384321;
n = 10,S = 3.2629617960237174006379225401125924696780532361131129694870306825;
n = 11,S = 3.2630972774909816911101883547513650075846387644343846888597514891;
n = 12,S = 3.2631462011700423564722235798002886866453041264696097377834305497;
n = 13,S = 3.2631637634943407102552109562524733770654325572383001278050196641;
n = 14,S = 3.2631700357503959462509357865252245223793882433311194818128240233;
n = 15,S = 3.2631722658855714084081204527290452178386797042968544305259872428;
n = 16,S = 3.2631730557250760210708273906792537354678974472514860493810358969;
n = 17,S = 3.2631733344919556847342507027856765228266433655042446296281320714;
n = 18,S = 3.2631734325765980230093498761675447527794175719112119348781321695;
n = 19,S = 3.2631734669922619421295936854034951082048636393109892583052860385;
n = 20,S = 3.2631734790377443069124578051351309386278745946198405884879035814;
n = 21,S = 3.2631734832441032271434957168891933326674826655902150743187693144;
n = 22,S = 3.2631734847099555780396770935317637125044795323659954901525850939;
n = 23,S = 3.2631734852198172652970824715973220869822221754004655699020462193;
n = 24,S = 3.2631734853968525733713167900801011937972616220140841456357934278;
n = 25,S = 3.2631734854582248135035731531082776855946935294522910682456930968;
n = 26,S = 3.2631734854794690504724144094588941855294012507842353707768030390;
n = 27,S = 3.2631734854868127373258390905304191593570752077494039087012136085;
n = 28,S = 3.2631734854893480577871402468694034851321091873996337406781549403;
n = 29,S = 3.2631734854902223062220716546127320418118836491014911392657055914;
n = 30,S = 3.2631734854905234362385480254658513711645143477147379188193457103;
n = 31,S = 3.2631734854906270508678732280045432367923948134008881011566150985;
n = 32,S = 3.2631734854906626683967037663387758880263959717157528571260549771;
n = 33,S = 3.2631734854906749006793324360653236300745384177395963419246594217;
n = 34,S = 3.2631734854906790980312148227356944906350056036777574458923479751;
n = 35,S = 3.2631734854906805371232887838797641154383508431849226448141694062;
n = 36,S = 3.2631734854906810301455733816791147322278112409004908035536623038;
n = 37,S = 3.2631734854906811989279771178626754549711734498358754001407410625;
n = 38,S = 3.2631734854906812566693257644517882483156252621879818982885104942;
n = 39,S = 3.2631734854906812764099577803796900482637223284988536762933699529;
n = 40,S = 3.2631734854906812831546737191550564954697808644939997601050218662;
n = 41,S = 3.2631734854906812854577474543466450382919018432084266763007107818;
n = 42,S = 3.2631734854906812862437170623882189060660372092701804942497146753;
n = 43,S = 3.2631734854906812865117997193946472020493802424939563225872891798;
n = 44,S = 3.2631734854906812866031915342832023029526070298765771466116320134;
n = 45,S = 3.2631734854906812866343324489859692262233150757646407195492388703;
n = 46,S = 3.2631734854906812866449384126890854971923219444409303466670744928;
n = 47,S = 3.2631734854906812866485489535241889085860261387898442216725038208;
n = 48,S = 3.2631734854906812866497775403361338194074948963400798180520168153;
n = 49,S = 3.2631734854906812866501954270068633809113958307897514321545406310;
n = 50,S = 3.2631734854906812866503375084749114318227221481068134365829416294;
n = 51,S = 3.2631734854906812866503857976013068478187284781305143141075054347;
n = 52,S = 3.2631734854906812866504022035224540083814742184540009737798991339;
n = 53,S = 3.2631734854906812866504077753447304025348595642236668149459163956;
n = 54,S = 3.2631734854906812866504096670127872030190336013676241064638949463;
n = 55,S = 3.2631734854906812866504103090334610262136623654892022509184787159;
n = 56,S = 3.2631734854906812866504105268619039305118399818875940032015000468;
n = 57,S = 3.2631734854906812866504106007452354419112218634730133338361443595;
n = 58,S = 3.2631734854906812866504106257976294601443456049301382686435563253;
n = 59,S = 3.2631734854906812866504106342899664154776078901698416351728859660;
n = 60,S = 3.2631734854906812866504106371679250503405467757232966648053777083;
n = 61,S = 3.2631734854906812866504106381429711452121435566211885327529642968;
n = 62,S = 3.2631734854906812866504106384732286934751037566027325525399317094;
n = 63,S = 3.2631734854906812866504106385850619373313442476017739137374395435;
n = 64,S = 3.2631734854906812866504106386229221500951756638254077078928237892;
n = 65,S = 3.2631734854906812866504106386357363759537032200857145305300282767;
n = 66,S = 3.2631734854906812866504106386400725028856292113455153240486779995;
n = 67,S = 3.2631734854906812866504106386415394513004101437120150949903107098;
n = 68,S = 3.2631734854906812866504106386420356250289389884830370763382158877;
n = 69,S = 3.2631734854906812866504106386422034132463158925118850893544157059;
n = 70,S = 3.2631734854906812866504106386422601416436195124454479889932261206;
n = 71,S = 3.2631734854906812866504106386422793174398911586201734761950775284;
n = 72,S = 3.2631734854906812866504106386422857981488162982995945899253328653;
n = 73,S = 3.2631734854906812866504106386422879879774028751775725005008529334;
n = 74,S = 3.2631734854906812866504106386422887277843577997985109838033934970;
n = 75,S = 3.2631734854906812866504106386422889776747070187815835381633627540;
n = 76,S = 3.2631734854906812866504106386422890620675003953679720762586155294;
n = 77,S = 3.2631734854906812866504106386422890905637682887607785956154541289;
n = 78,S = 3.2631734854906812866504106386422891001843031758463842153983184424;
n = 79,S = 3.2631734854906812866504106386422891034317411124153650153250236959;
n = 80,S = 3.2631734854906812866504106386422891045277514160073960353002867190;
n = 81,S = 3.2631734854906812866504106386422891048975985143388632930697170395;
n = 82,S = 3.2631734854906812866504106386422891050223843239385046849187524729;
n = 83,S = 3.2631734854906812866504106386422891050644807416347692508437282817;
n = 84,S = 3.2631734854906812866504106386422891050786799301434299179215971061;
n = 85,S = 3.2631734854906812866504106386422891050834686760718409664262901214;
n = 86,S = 3.2631734854906812866504106386422891050850834857453749246429889289;
n = 87,S = 3.2631734854906812866504106386422891050856279426467963358424889100;
n = 88,S = 3.2631734854906812866504106386422891050858114906173512812847445854;
n = 89,S = 3.2631734854906812866504106386422891050858733607197855325574150378;
n = 90,S = 3.2631734854906812866504106386422891050858942132357911505789447088;
n = 91,S = 3.2631734854906812866504106386422891050859012404573022013407788836;
n = 92,S = 3.2631734854906812866504106386422891050859036083254200554018317034;
n = 93,S = 3.2631734854906812866504106386422891050859044061017751746912186750;
n = 94,S = 3.2631734854906812866504106386422891050859046748562210482106930093;
n = 95,S = 3.2631734854906812866504106386422891050859047653840343950804106799;
n = 96,S = 3.2631734854906812866504106386422891050859047958743048626025030897;
n = 97,S = 3.2631734854906812866504106386422891050859048061425059135205960662;
n = 98,S = 3.2631734854906812866504106386422891050859048096001654510746477828;
n = 99,S = 3.2631734854906812866504106386422891050859048107643605815642274854;
n = 100,S = 3.2631734854906812866504106386422891050859048111563062754957193186;
附:fortran代码