1的无穷大次方为何等于e?
1个回答
展开全部
首先,1的无穷大次方并不等于e,而是等于1。
之所以会产生这样的歧义主要是因为以下两个式子:
乍一看仿佛是等量代换,得出1的无穷次方等于e,
【但是】——
这样的等量代换在极限的计算过程中是不可行的,
【因为】——
极限的计算与普通的运算不一样,凡是带有极限的式子都是一个整体,并不能拆开来先算一部分然后再算另一部分。这是因为极限式中的每一部分对极限的整体收敛是同步在起作用的,而不是一部分先收敛,另一部分之后再进行。
就拿这道题的例子:
当x趋于正无穷时,虽然1/x在不断减少,但作为指数的x却在不断增大,
指数x增大的这部分弥补并逐渐超越了1/x减少的部分,
所以整个极限式是在不断增大的,并且无限趋近于e
(比如:1.0001已经很接近1了,但1.0001^10000却等于2.718145...远远大于1)
所以下面才是正确的式子:
---------------------------------------------------------------------------
【补充】——
为什么x的增大能超越1/x的减小?
见下图
随着x的增大,1/x减少的速度越来越慢,而x的增长速度却始终不变,
这样一来,两边速度差就会越来越大,最终导致了极限e的诞生~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询