8.已知一个正数的平方根为6-2x和4则x=?
1个回答
展开全部
根据题目,我们知道一个正数的平方根为 $6-2x$ 和 $4$,可以表示为以下方程:
$$\sqrt{x}=6-2x \quad \text{和} \quad \sqrt{x}=4$$
对于第一个方程,可以将其平方得到:
$$x = (6-2x)^2 = 36 - 24x + 4x^2$$
将方程变形为二次方程标准形式 $4x^2 - 24x + 36 = 0$,然后使用求根公式求解:
$$x = \frac{-(-24) \pm \sqrt{(-24)^2 - 4 \times 4 \times 36}}{2 \times 4} = \frac{6 \pm 3\sqrt{3}}{2}$$
因为 $6-2x$ 为正数的平方根,所以必须有 $6-2x \ge 0$,即 $x \le 3$,因此 $x=\frac{6-3\sqrt{3}}{2}$。
因此,当一个正数的平方根为 $6-2x$ 和 $4$ 时,$x=\frac{6-3\sqrt{3}}{2}$。
$$\sqrt{x}=6-2x \quad \text{和} \quad \sqrt{x}=4$$
对于第一个方程,可以将其平方得到:
$$x = (6-2x)^2 = 36 - 24x + 4x^2$$
将方程变形为二次方程标准形式 $4x^2 - 24x + 36 = 0$,然后使用求根公式求解:
$$x = \frac{-(-24) \pm \sqrt{(-24)^2 - 4 \times 4 \times 36}}{2 \times 4} = \frac{6 \pm 3\sqrt{3}}{2}$$
因为 $6-2x$ 为正数的平方根,所以必须有 $6-2x \ge 0$,即 $x \le 3$,因此 $x=\frac{6-3\sqrt{3}}{2}$。
因此,当一个正数的平方根为 $6-2x$ 和 $4$ 时,$x=\frac{6-3\sqrt{3}}{2}$。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询