27和81的最小公倍数
27和81的最小公倍数是81。
因为27=3×3×3,81=3×3×3×3,所以最小公倍数就是3×3×3×3=81。
两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。整数a,b的最小公倍数记为[a,b],同样的,a,b,c的最小公倍数记为[a,b,c],多个整数的最小公倍数也有同样的记号。
与最小公倍数相对应的概念是最大公约数,a,b的最大公约数记为(a,b)。关于最小公倍数与最大公约数,我们有这样的定理:(a,b)x[a,b]=ab(a,b均为整数)。
最小公倍数的适用范围:
分数的加减法,中国剩余定理(正确的题在最小公倍数内有解,有唯一的解)。因为,素数是不能被1和自身数以外的其它数整除的数;素数X的N次方,是只能被X的N及以下次方,1和自身数整除。
所以,给最小公倍数下一个定义:S个数的最小公倍数,为这S个数中所含素因子的最高次方之间的乘积。
求最小公倍数示例:
问:两个自然数的积是360,最小公倍数是120,这两个数各是多少?
分析:这两个自然数称为甲数和乙数。因为甲、乙两数的积一定等于甲、乙两数的最大公因数与最小公倍数的积。
根据这一规律,可以求出这两个数的最大公因数是360÷120=3。又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数。
所以,a和b可以是1和40,也可以是5和8。当a和b是1和40时,所求的数是3×1=3和3×40=120;当a和b是5和8时,所求的数是3×5=15和3×8=24。