什么是矩阵初等行变换?
展开全部
矩阵初等行(列)变换有3种情况:
1、某一行(列),乘以一个非零倍数。
2、某一行(列),乘以一个非零倍数,加到另一行(列)。
3、某两行(列),互换。
对矩阵A作一次初等列变换相当于在矩阵A的右边乘了一个初等矩阵,对矩阵A作一次初等行变换,相当于在矩阵A的左边乘了一个初等矩阵。
扩展资料
应用
1、在解线性方程组中的应用
初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。
2、用于求解一个矩阵的逆矩阵
有的时候,当矩阵的阶数比较高的时候,使用其行列式的值和伴随矩阵求解其逆矩阵会产生较大的计算量。这时,通常使用将原矩阵和相同行数(也等于列数)的单位矩阵并排,再使用初等变换的方法将这个并排矩阵的左边化为单位矩阵,这时,右边的矩阵即为原矩阵的逆矩阵。
参考资料来源百度百科-初等矩阵
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询