行列式展开定理是什么?

 我来答
粥粥教育达人
2023-06-21 · TA获得超过985个赞
知道大有可为答主
回答量:2万
采纳率:99%
帮助的人:306万
展开全部

行列式展开定理:即拉普拉斯展开定理,指的是如果行列式的某一行(列)是两数之和,则可把它拆分成两个行列式再求和。行列式的某一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于零。

如果行列式D的第i行各元素与第j行各元素的代数余子式对应相乘后再相加,则当i≠j时,其和为零,行列式依行或依列展开,不仅对行列式计算有重要作用,且在行列式理论中也有重要的应用。

行列式按行展开的定理是拉普拉斯定理的一种简单情况,该行各元素分别乘以相应代数余子式求和,就等于行列式的值。a23处在二行三列,从原行列式中划去它所在的行和列各元素,剩下的元素按原位排列构成的新行列式,称为它的余子式。

化成三角形行列式法:这种化成三角形行列式法在用的时候要求我们将某一个行或者是列全部的化成1,这样的话就能方便我们利用行列之间的关系将其转化为一个三角形行列式,从而可以求出来这个三角形行列式的值。

因为我们求的行列式的值之间的各个元素是相等的,各个元素之外也是相等的,这一点也是需要注意的,在使用的时候可以直接转化一下,做题就简单多了,这种也是一种十分明确的利用行列式的特点来简化行列式的方法。

行列式计算方法:

降阶法:降阶法也是一种利用行列式的特点来简化行列式的方法之一,我们在使用的时候,利用行列式的性质将一个行或者一个列转化为一个非零的元素的时候,然后可以按照相关的展开行或者列。

每当你展开一次,这就说明行列式降低了一阶,直到无法展开之后就是最简单的行列式降阶法了。不过这一点只是适用于一些阶层比较低的行列式,针对于一些比较多阶的行列式是不可以使用的。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式