1个回答
展开全部
a+b=c
a^2+b^2+2ab=c^2
[a^(2/3)+b^(2/3)]^3
=a^2+3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)+b^2
[c^(2/3)]^3=c^2=a^2+b^2+2ab
两个相减
=a^2+3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)+b^2-(a^2+b^2+2ab)
=3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)-2ab
由均值不等式
3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)>=2√[3a^(4/3)b^(2/3)*3a^(2/3)b^(4/3)]=2√(9*a^2b^2)=6ab
所以3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)-2ab>=6ab-2ab=4ab>0
所以[a^(2/3)+b^(2/3)]^3>[c^(2/3)]^3
a^(2/3)+b^(2/3)>c^(2/3)
a^2+b^2+2ab=c^2
[a^(2/3)+b^(2/3)]^3
=a^2+3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)+b^2
[c^(2/3)]^3=c^2=a^2+b^2+2ab
两个相减
=a^2+3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)+b^2-(a^2+b^2+2ab)
=3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)-2ab
由均值不等式
3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)>=2√[3a^(4/3)b^(2/3)*3a^(2/3)b^(4/3)]=2√(9*a^2b^2)=6ab
所以3a^(4/3)b^(2/3)+3a^(2/3)b^(4/3)-2ab>=6ab-2ab=4ab>0
所以[a^(2/3)+b^(2/3)]^3>[c^(2/3)]^3
a^(2/3)+b^(2/3)>c^(2/3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询