求发动机课程设计 直列四缸汽油发动机CAD图纸。。。高高分!
因为在实习。时间很紧张。。so。。如果有学长做过类似的课程设计课题的话。希望共享下。满意的话要多少分都行。有的话网站消息联系...
因为在实习。时间很紧张。。
so。。如果有学长做过类似的课程设计课题的话。
希望共享下。满意的话要多少分都行。
有的话网站消息联系 展开
so。。如果有学长做过类似的课程设计课题的话。
希望共享下。满意的话要多少分都行。
有的话网站消息联系 展开
3个回答
展开全部
直列四缸汽油发动机CAD图
本曲轴设计系统的每个部分都是自上而下,从前到后一脉相承的,数据的传递是本系统的关键所在。所以设计计算模块采用类似属性向导的方式,由“上一步”、“下一步”和“取消”三个按钮来将几个模块连接起来,从前到后自成一体。
曲轴设计是以内燃机设计为基础的,所以首先必须进行内燃机的整体设计。单击欢迎界面上的“开始”按钮,系统就进入内燃机整体设计界面。此界面要求用户输入一些已知参数,如缸径、额定功率和额定转速等,为后来的曲轴设计奠定良好的环境基础和设计基础。接下来依次是“热力计算”界面(如图3所示)、“热力计算结果”界面(如图4所示)、“动力计算”界面(如图5所示)和“动力计算结果”界面(如图6所示),点击“完成”,结束本模块操作。
图3 热力计算参数输入界面
图4 热力计算结果界面
2.曲轴参数化设计模块
点击菜单上的“曲轴参数化设计”,可弹出下级子菜单“圆弧形曲柄臂”和“直线形曲柄臂”供用户选择。界面默认的单位是mm。
点击“圆弧形曲柄臂”,系统进入如图7所示的平衡重配置界面。该界面分为四个组合框:“参数”、“零件类型”、“材料”和“特性”。点击最后一行设置的“显示参数”按钮,便可在各编辑框中显示CA488曲轴的对应值。“参数”组合框是用户用来进行曲柄臂部分的参数化设计的,用户可根据自己的意愿来修改编辑框中的数值,直到满意为止。当用户改变选择的材料时,下面的“特性”框中的质量值就会发生变化。曲柄臂的形状复杂多样,都是不规则的,若想人工算出它的体积、重心和主惯性矩这些参数,相当的困难,需要做大量的工作,而借助于曲柄臂的模型特性就可以十分快捷地实现了。
图5 动力计算参数输入界面
图6 动力计算结果界面
修改和选择完界面上的参数后,点击“曲轴参数化”按钮,曲轴参数化设计采用无模式属性页的形式,分别完成“前端”、“曲柄臂”和“后端”三个部分。用户可根据Pro/ENGINEER界面上所显示的相应的三维模型和界面上显示的对应部分的二维图形,来设计自己的图形尺寸,修改完后点击“更新”按钮,Pro/ENGINEER便可根据新输入的数值来再生三维模型。图8所示圆弧形曲柄臂参数化设计界面。
图7平衡重配置界面
图8 曲轴曲柄臂参数化设计界面
同样的,选择直线形的曲柄臂或选择八平衡重的模型都是类似的界面,只是调用的三维样板模型不同而已。这里不再赘述。
3.圆角疲劳强度校核模块
此模块中,最重要的是各系数的确定。圆角形状系数确定界面(如图9所示)是一个无模式属性页形式的MFC对话框。它包括应力集中敏感系数、形状系数、材料敏感系数、疲劳极限系数、尺寸影响系数和强化系数等。这样就可以不必再用人工查询的方式来确定相应的系数,为用户节省了大量的人力和时间,大大提高了设计效率。
点击“确定”进入如图10所示“圆角强度校核”界面。此步计算中需要使用前面参数化设计中确定的曲轴结构参数,在这里我们可以直接调用前面用户输入的数据,而不需用户重复输入,进入界面时就可以看到结果。
图9 尺寸影响系数确定界面
图10 圆角强度校核界面
点击“确定”按钮,系统进入校核模块的最后一个界面“圆角疲劳强度校核结果”。系统可以通过界面显示的前两个安全系数,可以算出最终的校核安全系数。然后点击“完成”,如果整个设计过程满足要求,那么就会弹出一个消息框“恭喜你,设计成功!”,如果设计的结果并不合理,就会弹出“设计不合理,请重试!”的提示信息。到这一步为止,用户需要进行的设计、计算、校核工作全部结束。接下来就是后续的完善工作了。
4.工程图输出模块
点击菜单栏中的第四项“工程图输出(G)”,经过短暂的反应过程,Pro/ENGINEER会自动进入工程图模式,此时界面中会出现如图11所示的二维图形和一个无模式的“工程图尺寸调整”对话框。
Pro/ENGINEER工程图界面中所显示的正是用户前面参数化设计的三维曲轴模型的三个视图:主视图、俯视图和侧视图,也就是一般设计要求给出的工程图纸内容。通过点击对话框中的“调整”按钮,用户可以将视图放大或缩小。另外,设计人员可以通过鼠标激活后面的工程图,进行任意的视图调整,例如单个放大、缩小等等,非常方便,和在Pro/ENGINEER中的使用情况一样。
还有一个很重要的问题就是工程图中尺寸的标准。点击对话框中的“显示尺寸”按钮,用户就可以看到系统在为视图标注尺寸的快速过程。标准过后的界面如图12所示。尽管标注看上去有些零乱,但的确做到了正确的根据三维参数化设计中用户的输入进行自动标注。至于如何更好地解决清晰标注和如何正确自动生成标题栏的问题,将是日后努力研究开发的一个方面。
图11 工程图输出界面
图12 标注尺寸的工程图
5.数据库链接模块
最后,为了系统的延续性和完善性,我们设计了数据库链接模块。点击菜单栏中的最后一项“数据库(S)”,系统进入如图13所示的数据库链接界面。整个界面中的参数是由内燃机设计中需要说明的主要环境参数和曲轴的基本结构参数构成的。
当用户完成了本步操作,就结束了整个曲轴设计系统的全部过程。也就是说,用户以前需要花费大量时间和精力才能完成的工作,我们现在进行按钮的点击和输入少量的数据就可以轻松完成了。这也是此系统开发的最大意义。
图13 曲轴设计系统数据库界面
三、结论
基于Pro/ENGINEER二次开发的曲轴设计系统实现了以下三个突破:
1.图表查询数字化的实现;
2.根据已知的三维模型,直接调用其体积、重心位置和主惯性矩;
3.根据模型输出工程图及尺寸自动标注的开发手段。
本曲轴设计系统界面友好,提示充分,操作方便、快捷,显著缩短了产品的设计周期,提高了设计效率。系统为后续过程提供了完备的信息源,具备一定的产品信息数据处理功能,为曲轴设计的系列化、标准化和通用化奠
本曲轴设计系统的每个部分都是自上而下,从前到后一脉相承的,数据的传递是本系统的关键所在。所以设计计算模块采用类似属性向导的方式,由“上一步”、“下一步”和“取消”三个按钮来将几个模块连接起来,从前到后自成一体。
曲轴设计是以内燃机设计为基础的,所以首先必须进行内燃机的整体设计。单击欢迎界面上的“开始”按钮,系统就进入内燃机整体设计界面。此界面要求用户输入一些已知参数,如缸径、额定功率和额定转速等,为后来的曲轴设计奠定良好的环境基础和设计基础。接下来依次是“热力计算”界面(如图3所示)、“热力计算结果”界面(如图4所示)、“动力计算”界面(如图5所示)和“动力计算结果”界面(如图6所示),点击“完成”,结束本模块操作。
图3 热力计算参数输入界面
图4 热力计算结果界面
2.曲轴参数化设计模块
点击菜单上的“曲轴参数化设计”,可弹出下级子菜单“圆弧形曲柄臂”和“直线形曲柄臂”供用户选择。界面默认的单位是mm。
点击“圆弧形曲柄臂”,系统进入如图7所示的平衡重配置界面。该界面分为四个组合框:“参数”、“零件类型”、“材料”和“特性”。点击最后一行设置的“显示参数”按钮,便可在各编辑框中显示CA488曲轴的对应值。“参数”组合框是用户用来进行曲柄臂部分的参数化设计的,用户可根据自己的意愿来修改编辑框中的数值,直到满意为止。当用户改变选择的材料时,下面的“特性”框中的质量值就会发生变化。曲柄臂的形状复杂多样,都是不规则的,若想人工算出它的体积、重心和主惯性矩这些参数,相当的困难,需要做大量的工作,而借助于曲柄臂的模型特性就可以十分快捷地实现了。
图5 动力计算参数输入界面
图6 动力计算结果界面
修改和选择完界面上的参数后,点击“曲轴参数化”按钮,曲轴参数化设计采用无模式属性页的形式,分别完成“前端”、“曲柄臂”和“后端”三个部分。用户可根据Pro/ENGINEER界面上所显示的相应的三维模型和界面上显示的对应部分的二维图形,来设计自己的图形尺寸,修改完后点击“更新”按钮,Pro/ENGINEER便可根据新输入的数值来再生三维模型。图8所示圆弧形曲柄臂参数化设计界面。
图7平衡重配置界面
图8 曲轴曲柄臂参数化设计界面
同样的,选择直线形的曲柄臂或选择八平衡重的模型都是类似的界面,只是调用的三维样板模型不同而已。这里不再赘述。
3.圆角疲劳强度校核模块
此模块中,最重要的是各系数的确定。圆角形状系数确定界面(如图9所示)是一个无模式属性页形式的MFC对话框。它包括应力集中敏感系数、形状系数、材料敏感系数、疲劳极限系数、尺寸影响系数和强化系数等。这样就可以不必再用人工查询的方式来确定相应的系数,为用户节省了大量的人力和时间,大大提高了设计效率。
点击“确定”进入如图10所示“圆角强度校核”界面。此步计算中需要使用前面参数化设计中确定的曲轴结构参数,在这里我们可以直接调用前面用户输入的数据,而不需用户重复输入,进入界面时就可以看到结果。
图9 尺寸影响系数确定界面
图10 圆角强度校核界面
点击“确定”按钮,系统进入校核模块的最后一个界面“圆角疲劳强度校核结果”。系统可以通过界面显示的前两个安全系数,可以算出最终的校核安全系数。然后点击“完成”,如果整个设计过程满足要求,那么就会弹出一个消息框“恭喜你,设计成功!”,如果设计的结果并不合理,就会弹出“设计不合理,请重试!”的提示信息。到这一步为止,用户需要进行的设计、计算、校核工作全部结束。接下来就是后续的完善工作了。
4.工程图输出模块
点击菜单栏中的第四项“工程图输出(G)”,经过短暂的反应过程,Pro/ENGINEER会自动进入工程图模式,此时界面中会出现如图11所示的二维图形和一个无模式的“工程图尺寸调整”对话框。
Pro/ENGINEER工程图界面中所显示的正是用户前面参数化设计的三维曲轴模型的三个视图:主视图、俯视图和侧视图,也就是一般设计要求给出的工程图纸内容。通过点击对话框中的“调整”按钮,用户可以将视图放大或缩小。另外,设计人员可以通过鼠标激活后面的工程图,进行任意的视图调整,例如单个放大、缩小等等,非常方便,和在Pro/ENGINEER中的使用情况一样。
还有一个很重要的问题就是工程图中尺寸的标准。点击对话框中的“显示尺寸”按钮,用户就可以看到系统在为视图标注尺寸的快速过程。标准过后的界面如图12所示。尽管标注看上去有些零乱,但的确做到了正确的根据三维参数化设计中用户的输入进行自动标注。至于如何更好地解决清晰标注和如何正确自动生成标题栏的问题,将是日后努力研究开发的一个方面。
图11 工程图输出界面
图12 标注尺寸的工程图
5.数据库链接模块
最后,为了系统的延续性和完善性,我们设计了数据库链接模块。点击菜单栏中的最后一项“数据库(S)”,系统进入如图13所示的数据库链接界面。整个界面中的参数是由内燃机设计中需要说明的主要环境参数和曲轴的基本结构参数构成的。
当用户完成了本步操作,就结束了整个曲轴设计系统的全部过程。也就是说,用户以前需要花费大量时间和精力才能完成的工作,我们现在进行按钮的点击和输入少量的数据就可以轻松完成了。这也是此系统开发的最大意义。
图13 曲轴设计系统数据库界面
三、结论
基于Pro/ENGINEER二次开发的曲轴设计系统实现了以下三个突破:
1.图表查询数字化的实现;
2.根据已知的三维模型,直接调用其体积、重心位置和主惯性矩;
3.根据模型输出工程图及尺寸自动标注的开发手段。
本曲轴设计系统界面友好,提示充分,操作方便、快捷,显著缩短了产品的设计周期,提高了设计效率。系统为后续过程提供了完备的信息源,具备一定的产品信息数据处理功能,为曲轴设计的系列化、标准化和通用化奠
江苏贝内克
2024-09-06 广告
2024-09-06 广告
液压转台旋转接头也称旋转接头能够实现360度的旋转不饶管,稳定、高效地传输流体或气体,保证系统的正常工作。在保持各流路独立的状态下,将性质、压力等不同的多种压力流体输送、供应至旋转体的旋转接头。也能够将单流路固定配管送来的压力流体,分流至多...
点击进入详情页
本回答由江苏贝内克提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询