
箱子的上下限,分别是数据的上四分位数和下四分位数。这意味着箱子包含了5%的数据。因此,箱子的宽度在一定程度上反映了数据的波动程度。
箱子的中间一条线,是数据的中位数,代表了样本数据的平均水平。
2021-02-04 · 百度认证:SPSSAU官方账号,优质教育领域创作者

箱盒图(也称盒图,箱线图等)是在1977年由美国统计学家John Tukey发明,分析数据需要为定量数据。通过箱盒图,可以直观的探索数据特征。
箱盒图共有两个用途,分别如下:
直观地识别数据中异常值(离群点);
直观地判断数据离散分布情况,了解数据分布状态。
中横线:中位数
IQR:75%分位数(Q3)-25%分位数(Q1)
最小观察值(下边缘) = Q1 – 1.5 IQR
最大观察值 (上边缘)= Q3 + 1.5 IQR
箱盒图共由五个数值点构成,分别是最小观察值(下边缘),25%分位数(Q1),中位数,75%分位数(Q3),最大观察值(上边缘)。
箱盒图的使用场景情况如下:
查看可能的异常值数据情况(比如在回归分析前查看是否有异常数据);
非参数检验时查看不同类别X时,Y的数据分布情况;
其它涉及查看数据分布或者异常值查看时。
SPSSAU操作截图如下:
SPSSAU提供不同类别X时,Y的盒状图分布,比如上图中可以查看不同性别人群,C1,C2和C3共三项在区分性别时的盒状分布。
得到结果比如C1的盒状图如下:
上图可以看出,在男性时,C1中有2个异常点;女性时,C1共出现1个异常点。移动到异常点时会显示具体数据。此时如果有需要,可将此3个异常值进行处理,或者在分析时过滤掉异常值。
除了异常值的观察,还可以通过数据盒状图直观看出,男性在C1上的整体打分,会明显高于女性打分。
箱形图提供了一种只用5个点对数据集做简单总结的方式。这5个点包括中点、Q1、Q3、分部状态的高位和低位。箱形图很形象的分为中心、延伸以及分部状态的全部范围
箱形图中最重要的是对相关统计点的计算,相关统计点都可以通过百分位计算方法进行实现。
如何看箱线图:
同一数轴上,几批数据的箱形图并行排列,几批数据的中位数、尾长、异常值、分布区间等形状信息便一目了然。在一批数据中,哪几个数据点出类拔萃,哪些数据点表现不及一般,这些数据点放在同类其它群体中处于什么位置,可以通过比较各箱形图的异常值看出。各批数据的四分位距大小,正常值的分布是集中还是分散,观察各方盒和线段的长短便可明了。每批数据分布的偏态如何,分析中位线和异常值的位置也可估计出来。还有一些箱形图的变种,使数据批间的比较更加直观明白。例如有一种可变宽度的箱形图,使箱的宽度正比于批量的平方根,从而使批量大的数据批有面积大的箱,面积大的箱有适当的视觉效果。如果对同类群体的几批数据的箱形图进行比较,分析评价,便是常模参照解释方法的可视图示;如果把受测者数据批的箱形图与外在效标数据批的箱形图比较分析,便是效标参照解释的可视图示。箱形图结合这些分析方法用于质量管理、人事测评、探索性数据分析等统计分析活动中去,有助于分析过程的简便快捷,其作用显而易见。
箱线图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不会影响箱形图的数据形状,箱线图识别异常值的结果比较客观。由此可见,箱线图在识别异常值方面有一定的优越性。
1、下四分位数Q1
(1)确定四分位数的位置。Qi所在位置=i(n+1)/4,其中i=1,2,3。n表示序列中包含的项数。
(2)根据位置,计算相应的四分位数。
例中:
Q1所在的位置=(14+1)/4=3.75,
Q1=0.25×第三项+0.75×第四项=0.25×17+0.75×19=18.5;
2、中位数(第二个四分位数)Q2
中位数,即一组数由小到大排列处于中间位置的数。若序列数为偶数个,该组的中位数为中间两个数的平均数。
例中:
Q2所在的位置=2(14+1)/4=7.5,
Q2=0.5×第七项+0.5×第八项=0.5×25+0.5×28=26.5
3、上四分位数Q3
计算方法同下四分位数。
例中:
Q3所在的位置=3(14+1)/4=11.25,
Q3=0.75×第十一项+0.25×第十二项=0.75×34+0.25×35=34.25。
4、上限
上限是非异常范围内的最大值。
首先要知道什么是四分位距如何计算的?
四分位距IQR=Q3-Q1,那么上限=Q3+1.5IQR
5、下限
下限是非异常范围内的最小值。
下限=Q1-1.5IQR
BDP个人版箱形图效果: