急求工程问题的应用题(带题目,答案) 20
急求工程问题的应用题(带题目,答案)越多越好!!!!!!!!!!!急求!!!!!!!急求!!!!!!!急求!!!!!!!急求!!!!!!!急求!!!!!!!!!!!急求工...
急求工程问题的应用题(带题目,答案)越多越好!!!!!!!!!!!急求!!!!!!!急求!!!!!!!急求!!!!!!!急求!!!!!!!急求!!!!!!!!!!!急求工程问题的应用题(带题目,答案)越多越好
展开
展开全部
例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?
答:乙需要做4天可完成全部工作.
解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是
(18- 2 × 3)÷ 3= 4(天).
解三:甲与乙的工作效率之比是
6∶ 9= 2∶ 3.
甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).
例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?
解:共做了6天后,
原来,甲做 24天,乙做 24天,
现在,甲做0天,乙做40=(24+16)天.
这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率
如果乙独做,所需时间是
如果甲独做,所需时间是
答:甲或乙独做所需时间分别是75天和50天.
例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?
解:先对比如下:
甲做63天,乙做28天;
甲做48天,乙做48天.
就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的
甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做
因此,乙还要做
28+28= 56 (天).
答:乙还需要做 56天.
例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?
解一:甲队单独做8天,乙队单独做2天,共完成工作量
余下的工作量是两队共同合作的,需要的天数是
2+8+ 1= 11(天).
答:从开始到完工共用了11天.
解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作
(30- 3 × 8- 1× 2)÷(3+1)= 1(天).
解三:甲队做1天相当于乙队做3天.
在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.
4=3+1,
其中3天可由甲队1天完成,因此两队只需再合作1天.
例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?
解一:如果16天两队都不休息,可以完成的工作量是
由于两队休息期间未做的工作量是
乙队休息期间未做的工作量是
乙队休息的天数是
答:乙队休息了5天半.
解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.
两队休息期间未做的工作量是
(3+2)×16- 60= 20(份).
因此乙休息天数是
(20- 3 × 3)÷ 2= 5.5(天).
解三:甲队做2天,相当于乙队做3天.
甲队休息3天,相当于乙队休息4.5天.
如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是
16-6-4.5=5.5(天).
例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?
解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.
设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.
8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要
(60-4×8)÷(4+3)=4(天).
8+4=12(天).
答:这两项工作都完成最少需要12天.
例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他
要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?
解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.
两人合作,共完成
3× 0.8 + 2 × 0.9= 4.2(份).
因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是
(30-3×8)÷(4.2-3)=5(天).
很明显,最后转化成“鸡兔同笼”型问题.
例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快
如果这件工作始终由甲一人单独来做,需要多少小时?
解:乙6小时单独工作完成的工作量是
乙每小时完成的工作量是
两人合作6小时,甲完成的工作量是
甲单独做时每小时完成的工作量
甲单独做这件工作需要的时间是
答:甲单独完成这件工作需要33小时.
这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每
有一点方便,但好处不大.不必多此一举.
二、多人的工程问题
我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.
例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?
解:设这件工作的工作量是1.
甲、乙、丙三人合作每天完成
减去乙、丙两人每天完成的工作量,甲每天完成
答:甲一人独做需要90天完成.
例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?
例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?
解:甲做1天,乙就做3天,丙就做3×2=6(天).
说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了
2+6+12=20(天).
答:完成这项工作用了20天.
本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了
例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?
解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.
他们共同做13天的工作量,由甲单独完成,甲需要
答:甲独做需要26天.
事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.
例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?
解一:设这项工作的工作量是1.
甲组每人每天能完成
乙组每人每天能完成
甲组2人和乙组7人每天能完成
答:合作3天能完成这项工作.
解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.
现在已不需顾及人数,问题转化为:
甲组独做12天,乙组独做4天,问合作几天完成?
小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.
例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?
解一:仍设总工作量为1.
甲每天比乙多完成
因此这批零件的总数是
丙车间制作的零件数目是
答:丙车间制作了4200个零件.
解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.
乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知
乙、丙工作效率之比是16∶14=8∶7.
已知
甲、乙工作效率之比是 3∶2= 12∶8.
综合一起,甲、乙、丙三人工作效率之比是
12∶8∶7.
当三个车间一起做时,丙制作的零件个数是
2400÷(12- 8) × 7= 4200(个).
例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是
答:丙帮助甲搬运3小时,帮助乙搬运5小时.
解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4.
三人共同搬完,需要
60 × 2÷ (6+ 5+ 4)= 8(小时).
甲需丙帮助搬运
(60- 6× 8)÷ 4= 3(小时).
乙需丙帮助搬运
(60- 5× 8)÷4= 5(小时).
三、水管问题
从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.
例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?
甲每分钟注入水量是
乙每分钟注入水量是
因此水池容积是
答:水池容积是27立方米.
例16 有一些水管,它们每分钟注水量都相等.现在按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?
答:开始时打开6根水管.
例17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要
、乙、……的顺序轮流打开1小时,问多少时间后水开始溢出水池? 否则开甲管的过程中水池里的水就会溢出. 以后(20小时),池中的水已有
此题与广为流传的“青蛙爬井”是相仿的:一只掉进了枯井的青蛙,它要往上爬30尺才能到达井口,每小时它总是爬3尺,又滑下2尺.问这只青蛙需要多少小时才能爬到井口?
看起来它每小时只往上爬3- 2= 1(尺),但爬了27小时后,它再爬1小时,往上爬了3尺已到达井口.
因此,答案是28小时,而不是30小时.
例18 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
解:先计算1个水龙头每分钟放出水量.
2小时半比1小时半多60分钟,多流入水
4 × 60= 240(立方米).
时间都用分钟作单位,1个水龙头每分钟放水量是
240 ÷ ( 5× 150- 8 × 90)= 8(立方米),
8个水龙头1个半小时放出的水量是
8 × 8 × 90,
其中 90分钟内流入水量是 4 × 90,因此原来水池中存有水 8 × 8 × 90-4 × 90= 5400(立方米).
打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要
5400 ÷(8 × 13- 4)=54(分钟).
答:打开13个龙头,放空水池要54分钟.
水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.
例19 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空?
解:设满水池的水量为1.
A管每小时排出
A管4小时排出
因此,B,C两管齐开,每小时排水量是
B,C两管齐开,排光满水池的水,所需时间是
答: B, C两管齐开要 4 小时 48分才将满池水排完.
本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8与12的最小公倍数 24.
17世纪英国伟大的科学家牛顿写过一本《普遍算术》一书,书中提出了一个“牛吃草”问题,这是一道饶有趣味的算术题.从本质上讲,与例18和例19是类同的.题目涉及三种数量:原有草、新长出的草、牛吃掉的草.这与原有水量、渗入水量、水管排出的水量,是完全类同的.
例20 有三片牧场,场上草长得一样密,而且长得一草;21头牛9星期吃完第二片牧场的草.问多少头牛18星期才能吃完第三片牧场的草?
解:吃草总量=一头牛每星期吃草量×牛头数×星期数.根据这一计算公式,可以设定“一头牛每星期吃草量”作为草的计量单位.
原有草+4星期新长的草=12×4.
原有草+9星期新长的草=7×9.
由此可得出,每星期新长的草是(7×9-12×4)÷(9-4)=3.
那么原有草是7×9-3×9=36(或者12×4-3×4).
对第三片牧场来说,原有草和18星期新长出草的总量是
这些草能让90×7.2÷18=36(头)牛吃18个星期.
答:36头牛18个星期能吃完第三片牧场的草.
例20与例19的解法稍有一点不一样.例20把“新长的”具体地求出来,把“原有的”与“新长的”两种量统一起来计算.事实上,如果例19再有一个条件,例如:“打开B管,10小时可以将满池水排空.”也就可以求出“新长的”与“原有的”之间数量关系.但仅仅是例19所求,是不需要加这一条件.好好想一想,你能明白其中的道理吗?
“牛吃草”这一类型问题可以以各种各样的面目出现.限于篇幅,我们只再举一个例子.
例21 画展9点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有人排队.问第一个观众到达时间是8点几分?
解:设一个入场口每分钟能进入的观众为1个计算单位.
从9点至9点9分进入观众是3×9,
从9点至9点5分进入观众是5×5.
因为观众多来了9-5=4(分钟),所以每分钟来的观众是
(3×9-5×5)÷(9-5)=0.5.
9点前来的观众是
5×5-0.5×5=22.5.
这些观众来到需要
22.5÷0.5=45(分钟).
答:第一个观众到达时间是8点15分.
挖一条水渠,甲、乙两队合挖要六天完成。甲队先挖三天,乙队接着挖一天,可挖这条水渠的3/10,两队单独挖各需几天?
分析: 甲乙合作1天后,甲又做了2天共3/10-1/6=4/30
2÷(3/10-1/6)
=2÷4/30
=15(天)
1÷(1/6-1/15)=10(天)
答:甲单独做要15天,乙单独做要10天 .
.一件工作,如果甲单独做,那么甲按规定时间可提前2天完成,乙则要超过规定时间3天才完成。现在甲乙二人合作二天后,剩下的乙单独做,刚好在规定日期内完成。若甲乙二人合作,完成工作需多长时间?
解设:规定时间为X天.(甲单独要X-2天,乙单独要X+3天,甲一共做了2天,乙一共做了X天)
1/(X-2)×2 + X/(X+3)=1
X=12
规定要12天完成
1÷[1/(12-2)+1/(12+3)]
=1÷(1/6)
=6天
答:两人合作完成要6天. 例:一项工程,甲单独做63天,再由乙做28天完成,甲乙合作需要48天完成。甲先做42天,乙做还要几天? 答:设甲的工效为x,乙的工效为y
63x+28y=1
48x+48y=1
x=1/84
y=1/112
乙还要做(1-42/84)/(1/112)=56(天)
答:乙需要做4天可完成全部工作.
解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是
(18- 2 × 3)÷ 3= 4(天).
解三:甲与乙的工作效率之比是
6∶ 9= 2∶ 3.
甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).
例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?
解:共做了6天后,
原来,甲做 24天,乙做 24天,
现在,甲做0天,乙做40=(24+16)天.
这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率
如果乙独做,所需时间是
如果甲独做,所需时间是
答:甲或乙独做所需时间分别是75天和50天.
例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?
解:先对比如下:
甲做63天,乙做28天;
甲做48天,乙做48天.
就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的
甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做
因此,乙还要做
28+28= 56 (天).
答:乙还需要做 56天.
例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?
解一:甲队单独做8天,乙队单独做2天,共完成工作量
余下的工作量是两队共同合作的,需要的天数是
2+8+ 1= 11(天).
答:从开始到完工共用了11天.
解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作
(30- 3 × 8- 1× 2)÷(3+1)= 1(天).
解三:甲队做1天相当于乙队做3天.
在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.
4=3+1,
其中3天可由甲队1天完成,因此两队只需再合作1天.
例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?
解一:如果16天两队都不休息,可以完成的工作量是
由于两队休息期间未做的工作量是
乙队休息期间未做的工作量是
乙队休息的天数是
答:乙队休息了5天半.
解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.
两队休息期间未做的工作量是
(3+2)×16- 60= 20(份).
因此乙休息天数是
(20- 3 × 3)÷ 2= 5.5(天).
解三:甲队做2天,相当于乙队做3天.
甲队休息3天,相当于乙队休息4.5天.
如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是
16-6-4.5=5.5(天).
例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?
解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.
设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.
8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要
(60-4×8)÷(4+3)=4(天).
8+4=12(天).
答:这两项工作都完成最少需要12天.
例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他
要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?
解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.
两人合作,共完成
3× 0.8 + 2 × 0.9= 4.2(份).
因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是
(30-3×8)÷(4.2-3)=5(天).
很明显,最后转化成“鸡兔同笼”型问题.
例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快
如果这件工作始终由甲一人单独来做,需要多少小时?
解:乙6小时单独工作完成的工作量是
乙每小时完成的工作量是
两人合作6小时,甲完成的工作量是
甲单独做时每小时完成的工作量
甲单独做这件工作需要的时间是
答:甲单独完成这件工作需要33小时.
这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每
有一点方便,但好处不大.不必多此一举.
二、多人的工程问题
我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.
例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?
解:设这件工作的工作量是1.
甲、乙、丙三人合作每天完成
减去乙、丙两人每天完成的工作量,甲每天完成
答:甲一人独做需要90天完成.
例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?
例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?
解:甲做1天,乙就做3天,丙就做3×2=6(天).
说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了
2+6+12=20(天).
答:完成这项工作用了20天.
本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了
例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?
解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.
他们共同做13天的工作量,由甲单独完成,甲需要
答:甲独做需要26天.
事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.
例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?
解一:设这项工作的工作量是1.
甲组每人每天能完成
乙组每人每天能完成
甲组2人和乙组7人每天能完成
答:合作3天能完成这项工作.
解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.
现在已不需顾及人数,问题转化为:
甲组独做12天,乙组独做4天,问合作几天完成?
小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.
例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?
解一:仍设总工作量为1.
甲每天比乙多完成
因此这批零件的总数是
丙车间制作的零件数目是
答:丙车间制作了4200个零件.
解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.
乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知
乙、丙工作效率之比是16∶14=8∶7.
已知
甲、乙工作效率之比是 3∶2= 12∶8.
综合一起,甲、乙、丙三人工作效率之比是
12∶8∶7.
当三个车间一起做时,丙制作的零件个数是
2400÷(12- 8) × 7= 4200(个).
例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是
答:丙帮助甲搬运3小时,帮助乙搬运5小时.
解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4.
三人共同搬完,需要
60 × 2÷ (6+ 5+ 4)= 8(小时).
甲需丙帮助搬运
(60- 6× 8)÷ 4= 3(小时).
乙需丙帮助搬运
(60- 5× 8)÷4= 5(小时).
三、水管问题
从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.
例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?
甲每分钟注入水量是
乙每分钟注入水量是
因此水池容积是
答:水池容积是27立方米.
例16 有一些水管,它们每分钟注水量都相等.现在按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?
答:开始时打开6根水管.
例17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要
、乙、……的顺序轮流打开1小时,问多少时间后水开始溢出水池? 否则开甲管的过程中水池里的水就会溢出. 以后(20小时),池中的水已有
此题与广为流传的“青蛙爬井”是相仿的:一只掉进了枯井的青蛙,它要往上爬30尺才能到达井口,每小时它总是爬3尺,又滑下2尺.问这只青蛙需要多少小时才能爬到井口?
看起来它每小时只往上爬3- 2= 1(尺),但爬了27小时后,它再爬1小时,往上爬了3尺已到达井口.
因此,答案是28小时,而不是30小时.
例18 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
解:先计算1个水龙头每分钟放出水量.
2小时半比1小时半多60分钟,多流入水
4 × 60= 240(立方米).
时间都用分钟作单位,1个水龙头每分钟放水量是
240 ÷ ( 5× 150- 8 × 90)= 8(立方米),
8个水龙头1个半小时放出的水量是
8 × 8 × 90,
其中 90分钟内流入水量是 4 × 90,因此原来水池中存有水 8 × 8 × 90-4 × 90= 5400(立方米).
打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要
5400 ÷(8 × 13- 4)=54(分钟).
答:打开13个龙头,放空水池要54分钟.
水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.
例19 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空?
解:设满水池的水量为1.
A管每小时排出
A管4小时排出
因此,B,C两管齐开,每小时排水量是
B,C两管齐开,排光满水池的水,所需时间是
答: B, C两管齐开要 4 小时 48分才将满池水排完.
本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8与12的最小公倍数 24.
17世纪英国伟大的科学家牛顿写过一本《普遍算术》一书,书中提出了一个“牛吃草”问题,这是一道饶有趣味的算术题.从本质上讲,与例18和例19是类同的.题目涉及三种数量:原有草、新长出的草、牛吃掉的草.这与原有水量、渗入水量、水管排出的水量,是完全类同的.
例20 有三片牧场,场上草长得一样密,而且长得一草;21头牛9星期吃完第二片牧场的草.问多少头牛18星期才能吃完第三片牧场的草?
解:吃草总量=一头牛每星期吃草量×牛头数×星期数.根据这一计算公式,可以设定“一头牛每星期吃草量”作为草的计量单位.
原有草+4星期新长的草=12×4.
原有草+9星期新长的草=7×9.
由此可得出,每星期新长的草是(7×9-12×4)÷(9-4)=3.
那么原有草是7×9-3×9=36(或者12×4-3×4).
对第三片牧场来说,原有草和18星期新长出草的总量是
这些草能让90×7.2÷18=36(头)牛吃18个星期.
答:36头牛18个星期能吃完第三片牧场的草.
例20与例19的解法稍有一点不一样.例20把“新长的”具体地求出来,把“原有的”与“新长的”两种量统一起来计算.事实上,如果例19再有一个条件,例如:“打开B管,10小时可以将满池水排空.”也就可以求出“新长的”与“原有的”之间数量关系.但仅仅是例19所求,是不需要加这一条件.好好想一想,你能明白其中的道理吗?
“牛吃草”这一类型问题可以以各种各样的面目出现.限于篇幅,我们只再举一个例子.
例21 画展9点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有人排队.问第一个观众到达时间是8点几分?
解:设一个入场口每分钟能进入的观众为1个计算单位.
从9点至9点9分进入观众是3×9,
从9点至9点5分进入观众是5×5.
因为观众多来了9-5=4(分钟),所以每分钟来的观众是
(3×9-5×5)÷(9-5)=0.5.
9点前来的观众是
5×5-0.5×5=22.5.
这些观众来到需要
22.5÷0.5=45(分钟).
答:第一个观众到达时间是8点15分.
挖一条水渠,甲、乙两队合挖要六天完成。甲队先挖三天,乙队接着挖一天,可挖这条水渠的3/10,两队单独挖各需几天?
分析: 甲乙合作1天后,甲又做了2天共3/10-1/6=4/30
2÷(3/10-1/6)
=2÷4/30
=15(天)
1÷(1/6-1/15)=10(天)
答:甲单独做要15天,乙单独做要10天 .
.一件工作,如果甲单独做,那么甲按规定时间可提前2天完成,乙则要超过规定时间3天才完成。现在甲乙二人合作二天后,剩下的乙单独做,刚好在规定日期内完成。若甲乙二人合作,完成工作需多长时间?
解设:规定时间为X天.(甲单独要X-2天,乙单独要X+3天,甲一共做了2天,乙一共做了X天)
1/(X-2)×2 + X/(X+3)=1
X=12
规定要12天完成
1÷[1/(12-2)+1/(12+3)]
=1÷(1/6)
=6天
答:两人合作完成要6天. 例:一项工程,甲单独做63天,再由乙做28天完成,甲乙合作需要48天完成。甲先做42天,乙做还要几天? 答:设甲的工效为x,乙的工效为y
63x+28y=1
48x+48y=1
x=1/84
y=1/112
乙还要做(1-42/84)/(1/112)=56(天)
展开全部
1.现在对某商品降价百分之十促销,为了使销售总金额不变,销售量要比按原价销售时增加百分之几?
解:1÷(1-10%)-1
=1/9
≈11.11%
答:增加11.11%
2.甲对乙说:"当我是你现在的年龄,你才4岁."乙对甲说:"当我是你现在的年龄时,你将61岁."问甲,乙现在的年龄各是多少?
解:设甲现在x岁,乙现在y岁。
根据题意:
x-y=y-4,
x-y=61-x
解出:x=42,y=23
答:甲42岁,乙23岁。
3.有奇数个杯子杯口都向下,每次同时翻动偶数个杯子称为一次运动,问能否经过若干次运动使全部的杯子杯口朝上?为什么?
不能.因为当剩下最后一个杯子时是奇数,当然不能做一次运动啦.
4.一批文稿,如果甲抄30小时完成,乙抄20小时完成,现由甲抄3小时后该为乙抄余下部分,问乙尚需抄多少小时?(列方程解)
设乙尚需抄X小时
1/30*3+X*1/20=1
解得X=18
5.甲乙两人分别从相距60千米的AB两地骑摩托车出发去某地,甲在乙后面,甲每小时骑80千米,乙每小时骑45千米,若甲比乙早30分出发,问甲出发经过多长时间可以追上乙?
1/2*80=40千米
(60-40)/(80-45)=4/7
4/7+1/2=15/14
设X小时后追上
80X=45*(X-1/2)+60
解得X=15/14
6.某飞机原定以每小时495千米的速度飞往目的地,后因任务紧急,飞行速度提高到每小时660千米,结果提前1小时到达,问总的航程是多少千米?
x/495-x/660=1
7.一瓶酱油先吃去0.6千克,后又吃去余下的3/5,瓶中酱油还有0.8千克。这瓶酱油原来有多少千克?
(X-0。6)*(1-3/5)=0。8
8.一列货车和一列客车同时同地背向而行,当货车行5小时,客车行6小时后,两车相距568千米。已知货车每小时比客车快8千米。客车每小时行多少千米?
设客车是X,则货车是X+8
5(X+8)+6X=568
9.李欣骑自行车,刘强骑摩托车,同时从相距60千米的两地出发相向而行。途中相遇后继续前进背向而行。在出发后6小时,他们相距240千米。已知李欣每小时行18千米,求刘强每小时行多少千米?
6(18+X)=60+240
10.甲、乙两人相距22.5千米,并分别以2.5千米/时与5千米/时的速度同时相向而行,同时甲所带的小狗以7.5千米/时的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙……直到甲、乙两人相遇,求小狗所走的路程。
.因为小狗行走的时间=甲乙行走的时间
所以 小狗的路程=小狗的时间*小狗的速度
=甲乙的时间*小狗的速度
=22.5/(2.5+5)*7.5
=22.5(千米)
1.一批货物,驾车单独运4小时运完,一车单独运5小时运完。两车合运2小时后,余下的由乙车运,还需多少时间可以运完?
=1/2小时
2.两列火车从甲、乙两地同时相对开出,甲车每小时行驶54千米,比乙车速度慢10%。经过3小时,两车行了全程的75%。甲、乙两地相距多少千米?
=456千米
3.有一种衣服现售价是34元,比原来定价便宜15%。现在比原来定价少多少元?
=6元
4.粮店运进一批豆油。第一天卖出240千克,第二天卖出320千克,还剩总数的4/9。这批豆油有多少千克?
=1008千克
5.某服装厂上半月完成全月计划的40%,下半月生产服装1800套,正好完成全月计划。下半月比上半月多生产多少套?
=600套
6.花生仁的重量约占花生重量的70%,花生仁的出油率约为40%,用1000千克的花生剥出花生仁,在榨出花生油,共能榨出多少千克油?
=280千克
7.商店运进一批苹果。第一天卖出总数的2/7,第二天卖出总数的1/3,还剩80千克。这批苹果一共有多少千克?
=210千克
8.小红看一本120页的故事书,如果再看8页,那么看过的页数是全书的2/5,小红看过的页数占全书的几分之几?
=1/3
9.新华小学今年计划招生120人,实际招生超过原计划的1/10。实际招生多少人?
=132人
10.儿童玩具厂计划生产电动玩具5000件。已经生产了3/5,还要生产多少件?
=1400件
(1)一个圆柱体底面周长是另一个圆锥体底面周长的2/3,而这个圆锥体高是圆柱体高的2/5,圆锥体体积是圆柱体体积的几分之几?
(2)有一只圆柱体的/玻璃杯,测得内直经是8厘米,内装药水的深度是6厘米,正好是杯内容量的4/5,再加多少药水,可以把杯子注满?
(3)有两筐苹果,甲筐比乙筐少31个,如果从甲筐中取出7个放入乙筐,那么甲筐与乙筐苹果个数的比是4:7,现在乙筐有多少个苹果?
(4)甲乙丙三人共同生产一批零件,甲生产的零件是乙丙总和的1/2,甲丙生产的零件总和与乙生产零件个数的比是7:2,丙生产200个零件,甲生产了多少个零件?
(5)一个工人师傅制造一个零件用5分钟,他的徒弟制造一个零件用9分钟,师徒两人合做一段时间后,一共制造了84个零件。两人各制造了多少个零件?
(6)一个直角梯形,上底和下底的比是5:2,如果上底延长2米,下底延长8米,变成一个正方形,求原来梯形的面积?
(7)甲乙两队的人数的比是7:8,如果从甲队派30人去乙队,那么甲乙两队人数的比是2:3。甲乙两队原来各有多少人?
(8)一辆货车从县城往山里运货,往返共走20小时,去时所用时间是回来时的1.5倍,已知去时每小时比回来时慢12千米,求往返的路程。
(9)一项工程,若由甲乙两个施工队合做要12天完成,已知甲乙两个施工队工作效率的比是2:3,这项工程由乙队单独做要多少天完成?
(10)一堆煤,第一次运走它的1/4,第二次又运走120吨,这时余下的煤的吨数与运走的吨数的比是2/3。这堆煤原有多少吨?
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×[15.5-(3.21+5.79)]
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
0.8×[7.9-(2+5)]
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
解:1÷(1-10%)-1
=1/9
≈11.11%
答:增加11.11%
2.甲对乙说:"当我是你现在的年龄,你才4岁."乙对甲说:"当我是你现在的年龄时,你将61岁."问甲,乙现在的年龄各是多少?
解:设甲现在x岁,乙现在y岁。
根据题意:
x-y=y-4,
x-y=61-x
解出:x=42,y=23
答:甲42岁,乙23岁。
3.有奇数个杯子杯口都向下,每次同时翻动偶数个杯子称为一次运动,问能否经过若干次运动使全部的杯子杯口朝上?为什么?
不能.因为当剩下最后一个杯子时是奇数,当然不能做一次运动啦.
4.一批文稿,如果甲抄30小时完成,乙抄20小时完成,现由甲抄3小时后该为乙抄余下部分,问乙尚需抄多少小时?(列方程解)
设乙尚需抄X小时
1/30*3+X*1/20=1
解得X=18
5.甲乙两人分别从相距60千米的AB两地骑摩托车出发去某地,甲在乙后面,甲每小时骑80千米,乙每小时骑45千米,若甲比乙早30分出发,问甲出发经过多长时间可以追上乙?
1/2*80=40千米
(60-40)/(80-45)=4/7
4/7+1/2=15/14
设X小时后追上
80X=45*(X-1/2)+60
解得X=15/14
6.某飞机原定以每小时495千米的速度飞往目的地,后因任务紧急,飞行速度提高到每小时660千米,结果提前1小时到达,问总的航程是多少千米?
x/495-x/660=1
7.一瓶酱油先吃去0.6千克,后又吃去余下的3/5,瓶中酱油还有0.8千克。这瓶酱油原来有多少千克?
(X-0。6)*(1-3/5)=0。8
8.一列货车和一列客车同时同地背向而行,当货车行5小时,客车行6小时后,两车相距568千米。已知货车每小时比客车快8千米。客车每小时行多少千米?
设客车是X,则货车是X+8
5(X+8)+6X=568
9.李欣骑自行车,刘强骑摩托车,同时从相距60千米的两地出发相向而行。途中相遇后继续前进背向而行。在出发后6小时,他们相距240千米。已知李欣每小时行18千米,求刘强每小时行多少千米?
6(18+X)=60+240
10.甲、乙两人相距22.5千米,并分别以2.5千米/时与5千米/时的速度同时相向而行,同时甲所带的小狗以7.5千米/时的速度奔向乙,小狗遇乙后立即回头奔向甲,遇甲后又奔向乙……直到甲、乙两人相遇,求小狗所走的路程。
.因为小狗行走的时间=甲乙行走的时间
所以 小狗的路程=小狗的时间*小狗的速度
=甲乙的时间*小狗的速度
=22.5/(2.5+5)*7.5
=22.5(千米)
1.一批货物,驾车单独运4小时运完,一车单独运5小时运完。两车合运2小时后,余下的由乙车运,还需多少时间可以运完?
=1/2小时
2.两列火车从甲、乙两地同时相对开出,甲车每小时行驶54千米,比乙车速度慢10%。经过3小时,两车行了全程的75%。甲、乙两地相距多少千米?
=456千米
3.有一种衣服现售价是34元,比原来定价便宜15%。现在比原来定价少多少元?
=6元
4.粮店运进一批豆油。第一天卖出240千克,第二天卖出320千克,还剩总数的4/9。这批豆油有多少千克?
=1008千克
5.某服装厂上半月完成全月计划的40%,下半月生产服装1800套,正好完成全月计划。下半月比上半月多生产多少套?
=600套
6.花生仁的重量约占花生重量的70%,花生仁的出油率约为40%,用1000千克的花生剥出花生仁,在榨出花生油,共能榨出多少千克油?
=280千克
7.商店运进一批苹果。第一天卖出总数的2/7,第二天卖出总数的1/3,还剩80千克。这批苹果一共有多少千克?
=210千克
8.小红看一本120页的故事书,如果再看8页,那么看过的页数是全书的2/5,小红看过的页数占全书的几分之几?
=1/3
9.新华小学今年计划招生120人,实际招生超过原计划的1/10。实际招生多少人?
=132人
10.儿童玩具厂计划生产电动玩具5000件。已经生产了3/5,还要生产多少件?
=1400件
(1)一个圆柱体底面周长是另一个圆锥体底面周长的2/3,而这个圆锥体高是圆柱体高的2/5,圆锥体体积是圆柱体体积的几分之几?
(2)有一只圆柱体的/玻璃杯,测得内直经是8厘米,内装药水的深度是6厘米,正好是杯内容量的4/5,再加多少药水,可以把杯子注满?
(3)有两筐苹果,甲筐比乙筐少31个,如果从甲筐中取出7个放入乙筐,那么甲筐与乙筐苹果个数的比是4:7,现在乙筐有多少个苹果?
(4)甲乙丙三人共同生产一批零件,甲生产的零件是乙丙总和的1/2,甲丙生产的零件总和与乙生产零件个数的比是7:2,丙生产200个零件,甲生产了多少个零件?
(5)一个工人师傅制造一个零件用5分钟,他的徒弟制造一个零件用9分钟,师徒两人合做一段时间后,一共制造了84个零件。两人各制造了多少个零件?
(6)一个直角梯形,上底和下底的比是5:2,如果上底延长2米,下底延长8米,变成一个正方形,求原来梯形的面积?
(7)甲乙两队的人数的比是7:8,如果从甲队派30人去乙队,那么甲乙两队人数的比是2:3。甲乙两队原来各有多少人?
(8)一辆货车从县城往山里运货,往返共走20小时,去时所用时间是回来时的1.5倍,已知去时每小时比回来时慢12千米,求往返的路程。
(9)一项工程,若由甲乙两个施工队合做要12天完成,已知甲乙两个施工队工作效率的比是2:3,这项工程由乙队单独做要多少天完成?
(10)一堆煤,第一次运走它的1/4,第二次又运走120吨,这时余下的煤的吨数与运走的吨数的比是2/3。这堆煤原有多少吨?
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×[15.5-(3.21+5.79)]
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
0.8×[7.9-(2+5)]
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、一项工程,甲队独做要10个月完成,乙队独做要15个月完成,两队合做3个月,乙队调走,甲队独做2个月,乙队又调回与甲队一起做,前后共用多少个月完成?
答案:设总工程为1,甲每个月完成工程的10分之1 乙每个月完成工程的15分之1。
2、一项工程,甲对单独做20天完成,乙单独做15天完成,现在由甲、乙合作若干天后,剩下的部分由乙独做,先后用20天,问甲做几天?
3、某项工程由甲乙两队完成,甲单独完成需24天,乙单独完成需16天,先由甲对单独做5天,然后两队合作,问再做多少天可以完成全工程的八分之五?
4、一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成,开始三队合作,中途甲队另有任务,由乙丙两对完成,从开始到工程完成共用了6小时,问甲队实际做了几小时?
答案:设总工程为1,甲每个月完成工程的10分之1 乙每个月完成工程的15分之1。
2、一项工程,甲对单独做20天完成,乙单独做15天完成,现在由甲、乙合作若干天后,剩下的部分由乙独做,先后用20天,问甲做几天?
3、某项工程由甲乙两队完成,甲单独完成需24天,乙单独完成需16天,先由甲对单独做5天,然后两队合作,问再做多少天可以完成全工程的八分之五?
4、一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成,开始三队合作,中途甲队另有任务,由乙丙两对完成,从开始到工程完成共用了6小时,问甲队实际做了几小时?
参考资料: 没有啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |