证明定积分不等式

如何证明这个积分不等式π/6<∫(上限1,下限0)dx/根号(4-x^2-x)<π/4根号2... 如何证明这个积分不等式 π/6<∫(上限1,下限0) dx/根号(4-x^2-x) <π/4根号2 展开
ybcplayer
2009-01-19 · TA获得超过598个赞
知道小有建树答主
回答量:210
采纳率:100%
帮助的人:405万
展开全部
因为当x∈(0,1)时,1/√(4-x^2-x)>1/√(4-x^2)
则∫(0,1)1/√(4-x^2-x)dx>∫(0,1)1/√(4-x^2)=arc sin(x/2)|(0,1)
=arc sin(1/2)=П/6,左边得证.
而当x∈(0,1)时,1/√(4-x^2-x)=(1/√2)*1/√(2-x^2/2-x/2)>(1/√2)
*1/√(2-x^2)
则∫(0,1)1/√(4-x^2-x)dx>∫(0,1)(1/√2)*1/√(2-x^2)=(1/√2)*
arc sin(x/√2)|(0,1)=П/4√2,右边不得证.
题目有误,其实若设I=∫(上限1,下限0) dx/根号(4-x^2-x),
则I∈(П/6,П/4),范围最小也是I∈(П/4√2,arc sin√3/3).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式