小数点的由来:
中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。第一个将这一概念用文字表达出来的是魏晋时代的刘徽。
他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒 、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。
到了宋、元时代,小数概念得到了进一步的普及和更明确的表示。杨辉《日用算法》(1262年)载有两斤换算 的口诀:“一求,隔位六二五;二求,退位一二五”,即1/16=0?0625;2/16=0?125。 这里的“隔位”、“退位”已含有指示小数点位置的意义。
秦九韶则将单位注在表示整数部分个位的筹码之下,例如: —Ⅲ—Ⅱ表示13.12寸 寸是世界上最早的小数表示法。
扩展资料:
小数的性质:
1、在小数的末尾添上或去掉任意个零,小数的大小不变。例如:0.4=0.400,0.060=0.06。
2、把小数点分别向右(或向左)移动n位,则小数的值将会扩大(或缩小)基底的n次方倍。
循环小数:
从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现的小数叫做循环小数。如 1/7=0.142857142857142857……,11/6=1.833333……等。循环小数亦属于有理数,可以化成分数形式。
无限不循环小数:
小数部分有无限多个数字,且没有依次不断地重复出现的一个数字或几个数字的小数叫做无限不循环小数,如圆周率π=3.14159265358979323……,自然对数的底数e=2.71828182845904……。无限不循环小数也就是无理数,不能化成分数形式。
参考资料来源:百度百科——小数点
小数点的由来
中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。第一个将这一概念用文字表达出来的是魏晋时代的刘徽。他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒 、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。
到了宋、元时代,小数概念得到了进一步的普及和更明确的表示。杨辉《日用算法》(1262年)载有两斤换算 的口诀:“一求,隔位六二五;二求,退位一二五”,即1/16=0�0625;2/16=0�125。 这里的“隔位”、“退位”已含有指示小数点位置的意义。秦九韶则将单位注在表示整数部分个位的筹码之下,例如: —Ⅲ—Ⅱ表示13.12寸 寸是世界上最早的小数表示法。
在欧洲和伊斯兰国家,古巴比伦的六十进制长期以来居于统治地位,一些经典科学著作都是采用六十进制,因此十进制小数的概念迟迟没有发展起来。15世纪中亚地区的阿尔卡西(?~1429)是中国以外第一个应用小数的人。欧洲数学家直到16世纪才开始考虑小数,其中较突出的是荷兰人斯蒂文(1548~1620),他在《论十进制》(1583年)一书中明确表示法。例如把5.714记为:5◎7①1②4③或5,7'1''4'''。而第一个把小数表示成今日世界通用的形式的人是德国数学家克拉维斯(1537~1612),他在《星盘》(1593年)一书中开始使用小数点作为整数部分与小数部分之间的分界符。
而中国比欧洲早采用了三百多年。
小数点尽管小,但是作用极大。我们时刻都不可忽略这个小小的符号。因为这个不起眼的差错,人类酿过一个又一个悲剧。正可谓“差之毫厘,谬以千里”。1967年,前苏联“联盟一号”坠毁事件,造成了不可挽回的损失。直接原因是在地面检查时,忽略了一个小数点……导致了数亿元财富的损失,人类还失去了一位太空英雄----科马洛夫的生命!
小数的名称是13世纪我国元代数学家朱世杰提出的。在13世纪中叶我国出现了低一格表示小数的记法.
在西方,小数出现很晚,直到16世纪,法国数学家克拉维斯首先使用了小数作为整数部分与小数部分分界的记号。
虽然我国对小数的认识远远早于欧洲,但现代数学中所使用的小数的表示法却是从欧洲传入我国的。欧洲关于十进小数的最大贡献者是荷兰工程师斯蒂文(Simon
Stevin,1548?1620)。他从制造利息表中体会到十进小数的优越性,因此他竭力主张把十进小数引进到整个算术运算中去,使十进小数有效地参与记数。不过,斯蒂文的小数记法并不高明,如139.654,他写作135⊙6①5②4③,每个数后面圈中的数是用来指明它前面数字位置的,这种表示方法,使小数的形式复杂化,并且给小数的运算带来很大的麻烦。1592年,瑞士数学家布尔基(Jobst
Burgi)对此作出较大的改进。他用一空心小圆圈把整数部分和小数部分隔开,比如把36.548表示为36。548,这与现代的表示法已极为接近。大约过了一年,德国的克拉维斯,首先用黑点代替了小圆圈。他在1608年发表的《代数学》中,将他的这一做法公之于世,至此,小数的现代记法才被确立下来
而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。
如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?